Search Results

Documents authored by Tutas, Malte


Document
3/2-Dual Approximation for CPU/GPU Scheduling

Authors: Bernhard Sebastian Germann, Klaus Jansen, Felix Ohnesorge, and Malte Tutas

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
We present a fast and efficient 3/2 dual approximation algorithm for CPU/GPU scheduling under the objective of makespan minimization. In CPU/GPU scheduling tasks can be scheduled on two different architectures. When executed on the CPU, a task is moldable and can be assigned to multiple cores. The running time becomes a function in the assigned cores. On a GPU, the task is a classical job with a set processing time. Both settings have drawn recent independent scientific interest. For the moldable CPU scheduling, the current best known constant rate approximation is a 3/2 approximation algorithm [Wu et al. EJOR volume 306]. The best efficient algorithm for this setting is a 3/2+ε approximation [Mounie et al. SIAM '07] whereas GPU scheduling admits a 13/11 approximation [Coffman, Garey, Johnson SIAM'78]. We improve upon the current best known algorithms for CPU/GPU scheduling by Bleuse et al. by formulating a novel multidimensional multiple choice knapsack to allot tasks to either architecture and schedule them there with known algorithms. This yields an improved running time over the current state of the art. We complement our theoretical results with experimentation that shows a significant speedup by using practical optimizations and explore their efficacy.

Cite as

Bernhard Sebastian Germann, Klaus Jansen, Felix Ohnesorge, and Malte Tutas. 3/2-Dual Approximation for CPU/GPU Scheduling. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{germann_et_al:LIPIcs.SEA.2024.13,
  author =	{Germann, Bernhard Sebastian and Jansen, Klaus and Ohnesorge, Felix and Tutas, Malte},
  title =	{{3/2-Dual Approximation for CPU/GPU Scheduling}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.13},
  URN =		{urn:nbn:de:0030-drops-203782},
  doi =		{10.4230/LIPIcs.SEA.2024.13},
  annote =	{Keywords: computing, machine scheduling, moldable, CPU/GPU}
}
Document
APPROX
Peak Demand Minimization via Sliced Strip Packing

Authors: Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas

Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)


Abstract
We study the Nonpreemptive Peak Demand Minimization (NPDM) problem, where we are given a set of jobs, specified by their processing times and energy requirements. The goal is to schedule all jobs within a fixed time period such that the peak load (the maximum total energy requirement at any time) is minimized. This problem has recently received significant attention due to its relevance in smart-grids. Theoretically, the problem is related to the classical strip packing problem (SP). In SP, a given set of axis-aligned rectangles must be packed into a fixed-width strip, such that the height of the strip is minimized. NPDM can be modeled as strip packing with slicing and stacking constraint: each rectangle may be cut vertically into multiple slices and the slices may be packed into the strip as individual pieces. The stacking constraint forbids solutions where two slices of the same rectangle are intersected by the same vertical line. Nonpreemption enforces the slices to be placed in contiguous horizontal locations (but may be placed at different vertical locations). We obtain a (5/3+ε)-approximation algorithm for the problem. We also provide an asymptotic efficient polynomial-time approximation scheme (AEPTAS) which generates a schedule for almost all jobs with energy consumption (1+ε) OPT. The remaining jobs fit into a thin container of height 1. The previous best result for NPDM was a 2.7 approximation based on FFDH [Ranjan et al., 2015]. One of our key ideas is providing several new lower bounds on the optimal solution of a geometric packing, which could be useful in other related problems. These lower bounds help us to obtain approximative solutions based on Steinberg’s algorithm in many cases. In addition, we show how to split schedules generated by the AEPTAS into few segments and to rearrange the corresponding jobs to insert the thin container mentioned above.

Cite as

Max A. Deppert, Klaus Jansen, Arindam Khan, Malin Rau, and Malte Tutas. Peak Demand Minimization via Sliced Strip Packing. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 21:1-21:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{deppert_et_al:LIPIcs.APPROX/RANDOM.2021.21,
  author =	{Deppert, Max A. and Jansen, Klaus and Khan, Arindam and Rau, Malin and Tutas, Malte},
  title =	{{Peak Demand Minimization via Sliced Strip Packing}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)},
  pages =	{21:1--21:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-207-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{207},
  editor =	{Wootters, Mary and Sanit\`{a}, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.21},
  URN =		{urn:nbn:de:0030-drops-147145},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2021.21},
  annote =	{Keywords: scheduling, peak demand minimization, approximation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail