Search Results

Documents authored by Vicary, Jamie


Document
homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

Authors: Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We present the proof assistant homotopy.io for working with finitely-presented semistrict higher categories. The tool runs in the browser with a point-and-click interface, allowing direct manipulation of proof objects via a graphical representation. We describe the user interface and explain how the tool can be used in practice. We also describe the essential subsystems of the tool, including collapse, contraction, expansion, typechecking, and layout, as well as key implementation details including data structure encoding, memoisation, and rendering. These technical innovations have been essential for achieving good performance in a resource-constrained setting.

Cite as

Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary. homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 30:1-30:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{corbyn_et_al:LIPIcs.FSCD.2024.30,
  author =	{Corbyn, Nathan and Heidemann, Lukas and Hu, Nick and Sarti, Chiara and Tataru, Calin and Vicary, Jamie},
  title =	{{homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{30:1--30:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.30},
  URN =		{urn:nbn:de:0030-drops-203594},
  doi =		{10.4230/LIPIcs.FSCD.2024.30},
  annote =	{Keywords: Higher category theory, proof assistant, string diagrams}
}
Document
A Classical Groupoid Model for Quantum Networks

Authors: David Reutter and Jamie Vicary

Published in: LIPIcs, Volume 72, 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)


Abstract
We give a mathematical analysis of a new type of classical computer network architecture, intended as a model of a new technology that has recently been proposed in industry. Our approach is based on groubits, generalizations of classical bits based on groupoids. This network architecture allows the direct execution of a number of protocols that are usually associated with quantum networks, including teleportation, dense coding and secure key distribution.

Cite as

David Reutter and Jamie Vicary. A Classical Groupoid Model for Quantum Networks. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{reutter_et_al:LIPIcs.CALCO.2017.19,
  author =	{Reutter, David and Vicary, Jamie},
  title =	{{A Classical Groupoid Model for Quantum Networks}},
  booktitle =	{7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-033-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{72},
  editor =	{Bonchi, Filippo and K\"{o}nig, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2017.19},
  URN =		{urn:nbn:de:0030-drops-80391},
  doi =		{10.4230/LIPIcs.CALCO.2017.19},
  annote =	{Keywords: groupoids, networks, quantum, semantics, key distribution}
}
Document
A 2-Categorical Approach to Composing Quantum Structures

Authors: David Reutter and Jamie Vicary

Published in: LIPIcs, Volume 72, 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)


Abstract
We present an infinite number of construction schemes for quantum structures, including unitary error bases, Hadamard matrices, quantum Latin squares and controlled families, many of which have not previously been described. Our results rely on the type structure of biunitary connections, 2-categorical structures which play a central role in the theory of planar algebras. They have an attractive graphical calculus which allows simple correctness proofs for the constructions we present. We apply these techniques to construct a unitary error basis that cannot be built using any previously known method.

Cite as

David Reutter and Jamie Vicary. A 2-Categorical Approach to Composing Quantum Structures. In 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 72, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{reutter_et_al:LIPIcs.CALCO.2017.20,
  author =	{Reutter, David and Vicary, Jamie},
  title =	{{A 2-Categorical Approach to Composing Quantum Structures}},
  booktitle =	{7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-033-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{72},
  editor =	{Bonchi, Filippo and K\"{o}nig, Barbara},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CALCO.2017.20},
  URN =		{urn:nbn:de:0030-drops-80389},
  doi =		{10.4230/LIPIcs.CALCO.2017.20},
  annote =	{Keywords: quantum constructions, 2-category, graphical calculus, planar algebra}
}
Document
Globular: An Online Proof Assistant for Higher-Dimensional Rewriting

Authors: Krzysztof Bar, Aleks Kissinger, and Jamie Vicary

Published in: LIPIcs, Volume 52, 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)


Abstract
This article introduces Globular, an online proof assistant for the formalization and verification of proofs in higher-dimensional category theory. The tool produces graphical visualizations of higher-dimensional proofs, assists in their construction with a point-and-click interface, and performs type checking to prevent incorrect rewrites. Hosted on the web, it has a low barrier to use, and allows hyperlinking of formalized proofs directly from research papers. It allows the formalization of proofs from logic, topology and algebra which are not formalizable by other methods, and we give several examples.

Cite as

Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: An Online Proof Assistant for Higher-Dimensional Rewriting. In 1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 52, pp. 34:1-34:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{bar_et_al:LIPIcs.FSCD.2016.34,
  author =	{Bar, Krzysztof and Kissinger, Aleks and Vicary, Jamie},
  title =	{{Globular: An Online Proof Assistant for Higher-Dimensional Rewriting}},
  booktitle =	{1st International Conference on Formal Structures for Computation and Deduction (FSCD 2016)},
  pages =	{34:1--34:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-010-1},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{52},
  editor =	{Kesner, Delia and Pientka, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2016.34},
  URN =		{urn:nbn:de:0030-drops-59880},
  doi =		{10.4230/LIPIcs.FSCD.2016.34},
  annote =	{Keywords: higher category theory, higher-dimensional rewriting, interactive theorem proving}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail