Search Results

Documents authored by Vidigueira, Manuel


Document
Efficient Signature-Free Validated Agreement

Authors: Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Manuel Vidigueira, and Igor Zablotchi

Published in: LIPIcs, Volume 319, 38th International Symposium on Distributed Computing (DISC 2024)


Abstract
Byzantine agreement enables n processes to agree on a common L-bit value, despite up to t > 0 arbitrary failures. A long line of work has been dedicated to improving the bit complexity of Byzantine agreement in synchrony. This has culminated in COOL, an error-free (deterministically secure against a computationally unbounded adversary) solution that achieves O(nL + n² log n) worst-case bit complexity (which is optimal for L ≥ n log n according to the Dolev-Reischuk lower bound). COOL satisfies strong unanimity: if all correct processes propose the same value, only that value can be decided. Whenever correct processes do not agree a priori (there is no unanimity), they may decide a default value ⊥ from COOL. Strong unanimity is, however, not sufficient for today’s state machine replication (SMR) and blockchain protocols. These systems value progress and require a decided value to always be valid (according to a predetermined predicate), excluding default decisions (such as ⊥) even in cases where there is no unanimity a priori. Validated Byzantine agreement satisfies this property (called external validity). Yet, the best error-free (or even signature-free) validated agreement solutions achieve only O(n²L) bit complexity, a far cry from the Ω(nL+n²) Dolev-Reischuk lower bound. Is it possible to bridge this complexity gap? We answer the question affirmatively. Namely, we present two new synchronous algorithms for validated Byzantine agreement, HashExt and ErrorFreeExt, with different trade-offs. Both algorithms are (1) signature-free, (2) optimally resilient (tolerate up to t < n / 3 failures), and (3) early-stopping (terminate in O(f+1) rounds, where f ≤ t denotes the actual number of failures). On the one hand, HashExt uses only hashes and achieves O(nL + n³κ) bit complexity, which is optimal for L ≥ n²κ (where κ is the size of a hash). On the other hand, ErrorFreeExt is error-free, using no cryptography whatsoever, and achieves O((nL + n²)log n) bit complexity, which is near-optimal for any L.

Cite as

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Manuel Vidigueira, and Igor Zablotchi. Efficient Signature-Free Validated Agreement. In 38th International Symposium on Distributed Computing (DISC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 319, pp. 14:1-14:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{civit_et_al:LIPIcs.DISC.2024.14,
  author =	{Civit, Pierre and Dzulfikar, Muhammad Ayaz and Gilbert, Seth and Guerraoui, Rachid and Komatovic, Jovan and Vidigueira, Manuel and Zablotchi, Igor},
  title =	{{Efficient Signature-Free Validated Agreement}},
  booktitle =	{38th International Symposium on Distributed Computing (DISC 2024)},
  pages =	{14:1--14:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-352-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{319},
  editor =	{Alistarh, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2024.14},
  URN =		{urn:nbn:de:0030-drops-212408},
  doi =		{10.4230/LIPIcs.DISC.2024.14},
  annote =	{Keywords: Validated Byzantine agreement, Bit complexity, Round complexity}
}
Document
Every Bit Counts in Consensus

Authors: Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, and Manuel Vidigueira

Published in: LIPIcs, Volume 281, 37th International Symposium on Distributed Computing (DISC 2023)


Abstract
Consensus enables n processes to agree on a common valid L-bit value, despite t < n/3 processes being faulty and acting arbitrarily. A long line of work has been dedicated to improving the worst-case communication complexity of consensus in partial synchrony. This has recently culminated in the worst-case word complexity of O(n²). However, the worst-case bit complexity of the best solution is still O(n²L + n²κ) (where κ is the security parameter), far from the Ω(nL + n²) lower bound. The gap is significant given the practical use of consensus primitives, where values typically consist of batches of large size (L > n). This paper shows how to narrow the aforementioned gap. Namely, we present a new algorithm, DARE (Disperse, Agree, REtrieve), that improves upon the O(n²L) term via a novel dispersal primitive. DARE achieves O(n^{1.5}L + n^{2.5}κ) bit complexity, an effective √n-factor improvement over the state-of-the-art (when L > nκ). Moreover, we show that employing heavier cryptographic primitives, namely STARK proofs, allows us to devise DARE-Stark, a version of DARE which achieves the near-optimal bit complexity of O(nL + n²poly(κ)). Both DARE and DARE-Stark achieve optimal O(n) worst-case latency.

Cite as

Pierre Civit, Seth Gilbert, Rachid Guerraoui, Jovan Komatovic, Matteo Monti, and Manuel Vidigueira. Every Bit Counts in Consensus. In 37th International Symposium on Distributed Computing (DISC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 281, pp. 13:1-13:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{civit_et_al:LIPIcs.DISC.2023.13,
  author =	{Civit, Pierre and Gilbert, Seth and Guerraoui, Rachid and Komatovic, Jovan and Monti, Matteo and Vidigueira, Manuel},
  title =	{{Every Bit Counts in Consensus}},
  booktitle =	{37th International Symposium on Distributed Computing (DISC 2023)},
  pages =	{13:1--13:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-301-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{281},
  editor =	{Oshman, Rotem},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2023.13},
  URN =		{urn:nbn:de:0030-drops-191399},
  doi =		{10.4230/LIPIcs.DISC.2023.13},
  annote =	{Keywords: Byzantine consensus, Bit complexity, Latency}
}
Document
Oracular Byzantine Reliable Broadcast

Authors: Martina Camaioni, Rachid Guerraoui, Matteo Monti, and Manuel Vidigueira

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
Byzantine Reliable Broadcast (BRB) is a fundamental distributed computing primitive, with applications ranging from notifications to asynchronous payment systems. Motivated by practical consideration, we study Client-Server Byzantine Reliable Broadcast (CSB), a multi-shot variant of BRB whose interface is split between broadcasting clients and delivering servers. We present Draft, an optimally resilient implementation of CSB. Like most implementations of BRB, Draft guarantees both liveness and safety in an asynchronous environment. Under good conditions, however, Draft achieves unparalleled efficiency. In a moment of synchrony, free from Byzantine misbehaviour, and at the limit of infinitely many broadcasting clients, a Draft server delivers a b-bits payload at an asymptotic amortized cost of 0 signature verifications, and (log₂(c) + b) bits exchanged, where c is the number of clients in the system. This is the information-theoretical minimum number of bits required to convey the payload (b bits, assuming it is compressed), along with an identifier for its sender (log₂(c) bits, necessary to enumerate any set of c elements, and optimal if broadcasting frequencies are uniform or unknown). These two achievements have profound practical implications. Real-world BRB implementations are often bottlenecked either by expensive signature verifications, or by communication overhead. For Draft, instead, the network is the limit: a server can deliver payloads as quickly as it would receive them from an infallible oracle.

Cite as

Martina Camaioni, Rachid Guerraoui, Matteo Monti, and Manuel Vidigueira. Oracular Byzantine Reliable Broadcast. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{camaioni_et_al:LIPIcs.DISC.2022.13,
  author =	{Camaioni, Martina and Guerraoui, Rachid and Monti, Matteo and Vidigueira, Manuel},
  title =	{{Oracular Byzantine Reliable Broadcast}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.13},
  URN =		{urn:nbn:de:0030-drops-172048},
  doi =		{10.4230/LIPIcs.DISC.2022.13},
  annote =	{Keywords: Byzantine reliable broadcast, Good-case complexity, Amortized complexity, Batching}
}
Document
Byzantine Consensus Is Θ(n²): The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony!

Authors: Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
The Dolev-Reischuk bound says that any deterministic Byzantine consensus protocol has (at least) quadratic communication complexity in the worst case. While it has been shown that the bound is tight in synchronous environments, it is still unknown whether a consensus protocol with quadratic communication complexity can be obtained in partial synchrony. Until now, the most efficient known solutions for Byzantine consensus in partially synchronous settings had cubic communication complexity (e.g., HotStuff, binary DBFT). This paper closes the existing gap by introducing SQuad, a partially synchronous Byzantine consensus protocol with quadratic worst-case communication complexity. In addition, SQuad is optimally-resilient and achieves linear worst-case latency complexity. The key technical contribution underlying SQuad lies in the way we solve view synchronization, the problem of bringing all correct processes to the same view with a correct leader for sufficiently long. Concretely, we present RareSync, a view synchronization protocol with quadratic communication complexity and linear latency complexity, which we utilize in order to obtain SQuad.

Cite as

Pierre Civit, Muhammad Ayaz Dzulfikar, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, Jovan Komatovic, and Manuel Vidigueira. Byzantine Consensus Is Θ(n²): The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony!. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{civit_et_al:LIPIcs.DISC.2022.14,
  author =	{Civit, Pierre and Dzulfikar, Muhammad Ayaz and Gilbert, Seth and Gramoli, Vincent and Guerraoui, Rachid and Komatovic, Jovan and Vidigueira, Manuel},
  title =	{{Byzantine Consensus Is \Theta(n²): The Dolev-Reischuk Bound Is Tight Even in Partial Synchrony!}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.14},
  URN =		{urn:nbn:de:0030-drops-172059},
  doi =		{10.4230/LIPIcs.DISC.2022.14},
  annote =	{Keywords: Optimal Byzantine consensus, Communication complexity, Latency complexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail