Search Results

Documents authored by Wegener, Simon


Document
EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications

Authors: Simon Wegener, Kris K. Nikov, Jose Nunez-Yanez, and Kerstin Eder

Published in: OASIcs, Volume 114, 21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023)


Abstract
This paper presents EnergyAnalyzer, a code-level static analysis tool for estimating the energy consumption of embedded software based on statically predictable hardware events. The tool utilises techniques usually used for worst-case execution time (WCET) analysis together with bespoke energy models developed for two predictable architectures - the ARM Cortex-M0 and the Gaisler LEON3 - to perform energy usage analysis. EnergyAnalyzer has been applied in various use cases, such as selecting candidates for an optimised convolutional neural network, analysing the energy consumption of a camera pill prototype, and analysing the energy consumption of satellite communications software. The tool was developed as part of a larger project called TeamPlay, which aimed to provide a toolchain for developing embedded applications where energy properties are first-class citizens, allowing the developer to reflect directly on these properties at the source code level. The analysis capabilities of EnergyAnalyzer are validated across a large number of benchmarks for the two target architectures and the results show that the statically estimated energy consumption has, with a few exceptions, less than 1% difference compared to the underlying empirical energy models which have been validated on real hardware.

Cite as

Simon Wegener, Kris K. Nikov, Jose Nunez-Yanez, and Kerstin Eder. EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications. In 21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023). Open Access Series in Informatics (OASIcs), Volume 114, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wegener_et_al:OASIcs.WCET.2023.9,
  author =	{Wegener, Simon and Nikov, Kris K. and Nunez-Yanez, Jose and Eder, Kerstin},
  title =	{{EnergyAnalyzer: Using Static WCET Analysis Techniques to Estimate the Energy Consumption of Embedded Applications}},
  booktitle =	{21th International Workshop on Worst-Case Execution Time Analysis (WCET 2023)},
  pages =	{9:1--9:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-293-8},
  ISSN =	{2190-6807},
  year =	{2023},
  volume =	{114},
  editor =	{W\"{a}gemann, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2023.9},
  URN =		{urn:nbn:de:0030-drops-184380},
  doi =		{10.4230/OASIcs.WCET.2023.9},
  annote =	{Keywords: Energy Modelling, Static Analysis, Gaisler LEON3, ARM Cortex-M0}
}
Document
TimeWeaver: A Tool for Hybrid Worst-Case Execution Time Analysis

Authors: Daniel Kästner, Markus Pister, Simon Wegener, and Christian Ferdinand

Published in: OASIcs, Volume 72, 19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019)


Abstract
Many embedded control applications have real-time requirements. If the application is safety-relevant, worst-case execution time bounds have to be determined in order to demonstrate deadline adherence. For high-performance multi-core architectures with degraded timing predictability, WCET bounds can be computed by hybrid WCET analysis which combines static analysis with timing measurements. This article focuses on a novel tool for hybrid WCET analysis based on non-intrusive instruction-level real-time tracing.

Cite as

Daniel Kästner, Markus Pister, Simon Wegener, and Christian Ferdinand. TimeWeaver: A Tool for Hybrid Worst-Case Execution Time Analysis. In 19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019). Open Access Series in Informatics (OASIcs), Volume 72, pp. 1:1-1:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{kastner_et_al:OASIcs.WCET.2019.1,
  author =	{K\"{a}stner, Daniel and Pister, Markus and Wegener, Simon and Ferdinand, Christian},
  title =	{{TimeWeaver: A Tool for Hybrid Worst-Case Execution Time Analysis}},
  booktitle =	{19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019)},
  pages =	{1:1--1:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-118-4},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{72},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2019.1},
  URN =		{urn:nbn:de:0030-drops-107661},
  doi =		{10.4230/OASIcs.WCET.2019.1},
  annote =	{Keywords: Worst-Case Execution Time (WCET) Analysis, Real-time Tracing, Functional Safety}
}
Document
Embedded Program Annotations for WCET Analysis

Authors: Bernhard Schommer, Christoph Cullmann, Gernot Gebhard, Xavier Leroy, Michael Schmidt, and Simon Wegener

Published in: OASIcs, Volume 63, 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)


Abstract
We present __builtin_ais_annot(), a user-friendly, versatile way to transfer annotations (also known as flow facts) written on the source code level to the machine code level. To do so, we couple two tools often used during the development of safety-critical hard real-time systems, the formally verified C compiler CompCert and the static WCET analyzer aiT. CompCert stores the AIS annotations given via __builtin_ais_annot() in a special section of the ELF binary, which can later be extracted automatically by aiT.

Cite as

Bernhard Schommer, Christoph Cullmann, Gernot Gebhard, Xavier Leroy, Michael Schmidt, and Simon Wegener. Embedded Program Annotations for WCET Analysis. In 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018). Open Access Series in Informatics (OASIcs), Volume 63, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{schommer_et_al:OASIcs.WCET.2018.8,
  author =	{Schommer, Bernhard and Cullmann, Christoph and Gebhard, Gernot and Leroy, Xavier and Schmidt, Michael and Wegener, Simon},
  title =	{{Embedded Program Annotations for WCET Analysis}},
  booktitle =	{18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)},
  pages =	{8:1--8:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-073-6},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{63},
  editor =	{Brandner, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2018.8},
  URN =		{urn:nbn:de:0030-drops-97543},
  doi =		{10.4230/OASIcs.WCET.2018.8},
  annote =	{Keywords: Worst-Case Execution Time (WCET) Analysis, Annotation Support, CompCert, Tool Coupling, aiT}
}
Document
Towards Multicore WCET Analysis

Authors: Simon Wegener

Published in: OASIcs, Volume 57, 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017)


Abstract
AbsInt is the leading provider of commercial tools for static code-level timing analysis. Its aiT Worst-Case Execution Time Analyzer computes tight bounds for the WCET of tasks in embedded real-time systems. However, the results only incorporate the core-local latencies, i.e. interference delays due to other cores in a multicore system are ignored. This paper presents some of the work we have done towards multicore WCET analysis. We look into both static and measurement-based timing analysis for COTS multicore systems.

Cite as

Simon Wegener. Towards Multicore WCET Analysis. In 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017). Open Access Series in Informatics (OASIcs), Volume 57, pp. 7:1-7:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{wegener:OASIcs.WCET.2017.7,
  author =	{Wegener, Simon},
  title =	{{Towards Multicore WCET Analysis}},
  booktitle =	{17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017)},
  pages =	{7:1--7:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-057-6},
  ISSN =	{2190-6807},
  year =	{2017},
  volume =	{57},
  editor =	{Reineke, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2017.7},
  URN =		{urn:nbn:de:0030-drops-73113},
  doi =		{10.4230/OASIcs.WCET.2017.7},
  annote =	{Keywords: Worst-Case Execution Time (WCET) Analysis for Multicore Processors, Real-time Systems}
}
Document
TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research

Authors: Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener

Published in: OASIcs, Volume 55, 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016)


Abstract
Engineering related research, such as research on worst-case execution time, uses experimentation to evaluate ideas. For these experiments we need example programs. Furthermore, to make the research experimentation repeatable those programs shall be made publicly available. We collected open-source programs, adapted them to a common coding style, and provide the collection in open-source. The benchmark collection is called TACLeBench and is available from GitHub in version 1.9 at the publication date of this paper. One of the main features of TACLeBench is that all programs are self-contained without any dependencies on standard libraries or an operating system.

Cite as

Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener. TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research. In 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016). Open Access Series in Informatics (OASIcs), Volume 55, pp. 2:1-2:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{falk_et_al:OASIcs.WCET.2016.2,
  author =	{Falk, Heiko and Altmeyer, Sebastian and Hellinckx, Peter and Lisper, Bj\"{o}rn and Puffitsch, Wolfgang and Rochange, Christine and Schoeberl, Martin and S{\o}rensen, Rasmus Bo and W\"{a}gemann, Peter and Wegener, Simon},
  title =	{{TACLeBench: A Benchmark Collection to Support Worst-Case Execution Time Research}},
  booktitle =	{16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016)},
  pages =	{2:1--2:10},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-025-5},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{55},
  editor =	{Schoeberl, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2016.2},
  URN =		{urn:nbn:de:0030-drops-68958},
  doi =		{10.4230/OASIcs.WCET.2016.2},
  annote =	{Keywords: Benchmark, WCET analysis, real-time systems}
}
Document
Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs

Authors: Boris Dreyer, Christian Hochberger, Alexander Lange, Simon Wegener, and Alexander Weiss

Published in: OASIcs, Volume 55, 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016)


Abstract
Traditionally, the Worst-Case Execution Time (WCET) of Embedded Software has been estimated using analytical approaches. This is effective, if good models of the processor/System-on-Chip (SoC) architecture exist. Unfortunately, modern high performance SoCs often contain unpredictable and/or undocumented components that influence the timing behaviour. Thus, analytical results for such processors are unrealistically pessimistic. One possible alternative approach seems to be hybrid WCET analysis, where measurement data together with an analytical approach is used to estimate worst-case behaviour. Previously, we demonstrated how continuous evaluation of basic block trace data can be used to produce detailed statistics of basic blocks in embedded software. In the meantime it has become clear that the trace data provided by modern SoCs delivers a different type of information. In this contribution, we show that even under realistic conditions, a meaningful analysis can be conducted with the trace data.

Cite as

Boris Dreyer, Christian Hochberger, Alexander Lange, Simon Wegener, and Alexander Weiss. Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs. In 16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016). Open Access Series in Informatics (OASIcs), Volume 55, pp. 4:1-4:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dreyer_et_al:OASIcs.WCET.2016.4,
  author =	{Dreyer, Boris and Hochberger, Christian and Lange, Alexander and Wegener, Simon and Weiss, Alexander},
  title =	{{Continuous Non-Intrusive Hybrid WCET Estimation Using Waypoint Graphs}},
  booktitle =	{16th International Workshop on Worst-Case Execution Time Analysis (WCET 2016)},
  pages =	{4:1--4:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-025-5},
  ISSN =	{2190-6807},
  year =	{2016},
  volume =	{55},
  editor =	{Schoeberl, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2016.4},
  URN =		{urn:nbn:de:0030-drops-68977},
  doi =		{10.4230/OASIcs.WCET.2016.4},
  annote =	{Keywords: Hybrid Worst-Case Execution Time (WCET) Estimation for Multicore Processors, Real-time Systems}
}
Document
Precise Continuous Non-Intrusive Measurement-Based Execution Time Estimation

Authors: Boris Dreyer, Christian Hochberger, Simon Wegener, and Alexander Weiss

Published in: OASIcs, Volume 47, 15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015)


Abstract
Precise estimation of the Worst-Case Execution Time (WCET) of embedded software is a necessary precondition in safety critical systems. Static methods for WCET analysis rely on precise models of the target processor’s micro-architecture. Measurement-based methods, in contrast, rely on exhaustive measurements performed on the real hardware. The rise of the multicore processors often renders staticWCET analysis infeasible, either due to the computational complexity or due the lack of necessary documentation. Current approaches for (hybrid) measurement-based WCET estimation process the trace data offline and thus need to store large amounts of data. In this contribution, we present a novel approach that performs continuous online aggregation of timing measurements. This enables long observation periods and increases the possibility to catch rare circumstances. Moreover, we incorporate the execution contexts of basic blocks. We can therefore account for typical cache behaviour, without being overly pessimistic.

Cite as

Boris Dreyer, Christian Hochberger, Simon Wegener, and Alexander Weiss. Precise Continuous Non-Intrusive Measurement-Based Execution Time Estimation. In 15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015). Open Access Series in Informatics (OASIcs), Volume 47, pp. 45-54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{dreyer_et_al:OASIcs.WCET.2015.45,
  author =	{Dreyer, Boris and Hochberger, Christian and Wegener, Simon and Weiss, Alexander},
  title =	{{Precise Continuous Non-Intrusive Measurement-Based Execution Time Estimation}},
  booktitle =	{15th International Workshop on Worst-Case Execution Time Analysis (WCET 2015)},
  pages =	{45--54},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-95-8},
  ISSN =	{2190-6807},
  year =	{2015},
  volume =	{47},
  editor =	{Cazorla, Francisco J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2015.45},
  URN =		{urn:nbn:de:0030-drops-52555},
  doi =		{10.4230/OASIcs.WCET.2015.45},
  annote =	{Keywords: Hybrid Worst-Case Execution Time (WCET) Estimation for Multicore Processors, Real-time Systems}
}
Document
Computing Same Block Relations for Relational Cache Analysis

Authors: Simon Wegener

Published in: OASIcs, Volume 23, 12th International Workshop on Worst-Case Execution Time Analysis (2012)


Abstract
In contrast to the classical cache analysis of Ferdinand, the relational cache analysis does not rely on precise address information. Instead, it uses same block relations between memory accesses to predict cache hits. The relational data cache analysis can thus also predict cache hits if fully unrolling a loop is not feasible during analysis, for example due to high memory consumption or long computation time. This paper proposes a static analysis based on abstract interpretation which is able to compute same block relations for relational cache analysis.

Cite as

Simon Wegener. Computing Same Block Relations for Relational Cache Analysis. In 12th International Workshop on Worst-Case Execution Time Analysis. Open Access Series in Informatics (OASIcs), Volume 23, pp. 25-37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{wegener:OASIcs.WCET.2012.25,
  author =	{Wegener, Simon},
  title =	{{Computing Same Block Relations for Relational Cache Analysis}},
  booktitle =	{12th International Workshop on Worst-Case Execution Time Analysis},
  pages =	{25--37},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-939897-41-5},
  ISSN =	{2190-6807},
  year =	{2012},
  volume =	{23},
  editor =	{Vardanega, Tullio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2012.25},
  URN =		{urn:nbn:de:0030-drops-35544},
  doi =		{10.4230/OASIcs.WCET.2012.25},
  annote =	{Keywords: Cache Analysis, WCET Analysis, Real-time Systems, Static Program Analysis, Abstract Interpretation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail