Search Results

Documents authored by Wells, Armin


Document
How to Reduce Temporal Cliques to Find Sparse Spanners

Authors: Sebastian Angrick, Ben Bals, Tobias Friedrich, Hans Gawendowicz, Niko Hastrich, Nicolas Klodt, Pascal Lenzner, Jonas Schmidt, George Skretas, and Armin Wells

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Many real-world networks, such as transportation or trade networks, are dynamic in the sense that the edge-set may change over time, but these changes are known in advance. This behavior is captured by the temporal graphs model, which has recently become a trending topic in theoretical computer science. A core open problem in the field is to prove the existence of linear-size temporal spanners in temporal cliques, i.e., sparse subgraphs of complete temporal graphs that ensure all-pairs reachability via temporal paths. So far, the best known result is the existence of temporal spanners with 𝒪(nlog n) many edges. We present significant progress towards proving whether linear-size temporal spanners exist in all temporal cliques. We adapt techniques used in previous works and heavily expand and generalize them. This allows us to show that the existence of a linear spanner in cliques and bi-cliques is equivalent and using this, we provide a simpler and more intuitive proof of the 𝒪(nlog n) bound by giving an efficient algorithm for finding linearithmic spanners. Moreover, we use our novel and efficiently computable approach to show that a large class of temporal cliques, called edge-pivotable graphs, admit linear-size temporal spanners. To contrast this, we investigate other classes of temporal cliques that do not belong to the class of edge-pivotable graphs. We introduce two such graph classes and we develop novel algorithmic techniques for establishing the existence of linear temporal spanners in these graph classes as well.

Cite as

Sebastian Angrick, Ben Bals, Tobias Friedrich, Hans Gawendowicz, Niko Hastrich, Nicolas Klodt, Pascal Lenzner, Jonas Schmidt, George Skretas, and Armin Wells. How to Reduce Temporal Cliques to Find Sparse Spanners. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{angrick_et_al:LIPIcs.ESA.2024.11,
  author =	{Angrick, Sebastian and Bals, Ben and Friedrich, Tobias and Gawendowicz, Hans and Hastrich, Niko and Klodt, Nicolas and Lenzner, Pascal and Schmidt, Jonas and Skretas, George and Wells, Armin},
  title =	{{How to Reduce Temporal Cliques to Find Sparse Spanners}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.11},
  URN =		{urn:nbn:de:0030-drops-210822},
  doi =		{10.4230/LIPIcs.ESA.2024.11},
  annote =	{Keywords: Temporal Graphs, temporal Clique, temporal Spanner, Reachability, Graph Connectivity, Graph Sparsification}
}
Document
A Strategic Routing Framework and Algorithms for Computing Alternative Paths

Authors: Thomas Bläsius, Maximilian Böther, Philipp Fischbeck, Tobias Friedrich, Alina Gries, Falk Hüffner, Otto Kißig, Pascal Lenzner, Louise Molitor, Leon Schiller, Armin Wells, and Simon Wietheger

Published in: OASIcs, Volume 85, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)


Abstract
Traditional navigation services find the fastest route for a single driver. Though always using the fastest route seems desirable for every individual, selfish behavior can have undesirable effects such as higher energy consumption and avoidable congestion, even leading to higher overall and individual travel times. In contrast, strategic routing aims at optimizing the traffic for all agents regarding a global optimization goal. We introduce a framework to formalize real-world strategic routing scenarios as algorithmic problems and study one of them, which we call Single Alternative Path (SAP), in detail. There, we are given an original route between a single origin-destination pair. The goal is to suggest an alternative route to all agents that optimizes the overall travel time under the assumption that the agents distribute among both routes according to a psychological model, for which we introduce the concept of Pareto-conformity. We show that the SAP problem is NP-complete, even for such models. Nonetheless, assuming Pareto-conformity, we give multiple algorithms for different variants of SAP, using multi-criteria shortest path algorithms as subroutines. Moreover, we prove that several natural models are in fact Pareto-conform. The implementation and evaluation of our algorithms serve as a proof of concept, showing that SAP can be solved in reasonable time even though the algorithms have exponential running time in the worst case.

Cite as

Thomas Bläsius, Maximilian Böther, Philipp Fischbeck, Tobias Friedrich, Alina Gries, Falk Hüffner, Otto Kißig, Pascal Lenzner, Louise Molitor, Leon Schiller, Armin Wells, and Simon Wietheger. A Strategic Routing Framework and Algorithms for Computing Alternative Paths. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{blasius_et_al:OASIcs.ATMOS.2020.10,
  author =	{Bl\"{a}sius, Thomas and B\"{o}ther, Maximilian and Fischbeck, Philipp and Friedrich, Tobias and Gries, Alina and H\"{u}ffner, Falk and Ki{\ss}ig, Otto and Lenzner, Pascal and Molitor, Louise and Schiller, Leon and Wells, Armin and Wietheger, Simon},
  title =	{{A Strategic Routing Framework and Algorithms for Computing Alternative Paths}},
  booktitle =	{20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)},
  pages =	{10:1--10:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-170-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{85},
  editor =	{Huisman, Dennis and Zaroliagis, Christos D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2020.10},
  URN =		{urn:nbn:de:0030-drops-131469},
  doi =		{10.4230/OASIcs.ATMOS.2020.10},
  annote =	{Keywords: Routing, Strategic Routing, Selfish Routing, Route Planning, Network Flow, Algorithm Design}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail