Search Results

Documents authored by van der Weide, Niels


Document
Univalent Enriched Categories and the Enriched Rezk Completion

Authors: Niels van der Weide

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Enriched categories are categories whose sets of morphisms are enriched with extra structure. Such categories play a prominent role in the study of higher categories, homotopy theory, and the semantics of programming languages. In this paper, we study univalent enriched categories. We prove that all essentially surjective and fully faithful functors between univalent enriched categories are equivalences, and we show that every enriched category admits a Rezk completion. Finally, we use the Rezk completion for enriched categories to construct univalent enriched Kleisli categories.

Cite as

Niels van der Weide. Univalent Enriched Categories and the Enriched Rezk Completion. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanderweide:LIPIcs.FSCD.2024.4,
  author =	{van der Weide, Niels},
  title =	{{Univalent Enriched Categories and the Enriched Rezk Completion}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.4},
  URN =		{urn:nbn:de:0030-drops-203337},
  doi =		{10.4230/LIPIcs.FSCD.2024.4},
  annote =	{Keywords: enriched categories, univalent categories, homotopy type theory, univalent foundations, Rezk completion}
}
Document
Certifying Higher-Order Polynomial Interpretations

Authors: Niels van der Weide, Deivid Vale, and Cynthia Kop

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Higher-order rewriting is a framework in which one can write higher-order programs and study their properties. One such property is termination: the situation that for all inputs, the program eventually halts its execution and produces an output. Several tools have been developed to check whether higher-order rewriting systems are terminating. However, developing such tools is difficult and can be error-prone. In this paper, we present a way of certifying termination proofs of higher-order term rewriting systems. We formalize a specific method that is used to prove termination, namely the polynomial interpretation method. In addition, we give a program that processes proof traces containing a high-level description of a termination proof into a formal Coq proof script that can be checked by Coq. We demonstrate the usability of this approach by certifying higher-order polynomial interpretation proofs produced by Wanda, a termination analysis tool for higher-order rewriting.

Cite as

Niels van der Weide, Deivid Vale, and Cynthia Kop. Certifying Higher-Order Polynomial Interpretations. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 30:1-30:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{vanderweide_et_al:LIPIcs.ITP.2023.30,
  author =	{van der Weide, Niels and Vale, Deivid and Kop, Cynthia},
  title =	{{Certifying Higher-Order Polynomial Interpretations}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{30:1--30:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.30},
  URN =		{urn:nbn:de:0030-drops-184051},
  doi =		{10.4230/LIPIcs.ITP.2023.30},
  annote =	{Keywords: higher-order rewriting, Coq, termination, formalization}
}
Document
The Formal Theory of Monads, Univalently

Authors: Niels van der Weide

Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)


Abstract
We develop the formal theory of monads, as established by Street, in univalent foundations. This allows us to formally reason about various kinds of monads on the right level of abstraction. In particular, we define the bicategory of monads internal to a bicategory, and prove that it is univalent. We also define Eilenberg-Moore objects, and we show that both Eilenberg-Moore categories and Kleisli categories give rise to Eilenberg-Moore objects. Finally, we relate monads and adjunctions in arbitrary bicategories. Our work is formalized in Coq using the https://github.com/UniMath/UniMath library.

Cite as

Niels van der Weide. The Formal Theory of Monads, Univalently. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{vanderweide:LIPIcs.FSCD.2023.6,
  author =	{van der Weide, Niels},
  title =	{{The Formal Theory of Monads, Univalently}},
  booktitle =	{8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)},
  pages =	{6:1--6:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-277-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{260},
  editor =	{Gaboardi, Marco and van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.6},
  URN =		{urn:nbn:de:0030-drops-179904},
  doi =		{10.4230/LIPIcs.FSCD.2023.6},
  annote =	{Keywords: bicategory theory, univalent foundations, formalization, monads, Coq}
}
Document
Bicategories in Univalent Foundations

Authors: Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We develop bicategory theory in univalent foundations. Guided by the notion of univalence for (1-)categories studied by Ahrens, Kapulkin, and Shulman, we define and study univalent bicategories. To construct examples of those, we develop the notion of "displayed bicategories", an analog of displayed 1-categories introduced by Ahrens and Lumsdaine. Displayed bicategories allow us to construct univalent bicategories in a modular fashion. To demonstrate the applicability of this notion, we prove several bicategories are univalent. Among these are the bicategory of univalent categories with families and the bicategory of pseudofunctors between univalent bicategories. Our work is formalized in the UniMath library of univalent mathematics.

Cite as

Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide. Bicategories in Univalent Foundations. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ahrens_et_al:LIPIcs.FSCD.2019.5,
  author =	{Ahrens, Benedikt and Frumin, Dan and Maggesi, Marco and van der Weide, Niels},
  title =	{{Bicategories in Univalent Foundations}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.5},
  URN =		{urn:nbn:de:0030-drops-105124},
  doi =		{10.4230/LIPIcs.FSCD.2019.5},
  annote =	{Keywords: bicategory theory, univalent mathematics, dependent type theory, Coq}
}
Document
Guarded Recursion in Agda via Sized Types

Authors: Niccolò Veltri and Niels van der Weide

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
In type theory, programming and reasoning with possibly non-terminating programs and potentially infinite objects is achieved using coinductive types. Recursively defined programs of these types need to be productive to guarantee the consistency of the type system. Proof assistants such as Agda and Coq traditionally employ strict syntactic productivity checks, which often make programming with coinductive types convoluted. One way to overcome this issue is by encoding productivity at the level of types so that the type system forbids the implementation of non-productive corecursive programs. In this paper we compare two different approaches to type-based productivity: guarded recursion and sized types. More specifically, we show how to simulate guarded recursion in Agda using sized types. We formalize the syntax of a simple type theory for guarded recursion, which is a variant of Atkey and McBride’s calculus for productive coprogramming. Then we give a denotational semantics using presheaves over the preorder of sizes. Sized types are fundamentally used to interpret the characteristic features of guarded recursion, notably the fixpoint combinator.

Cite as

Niccolò Veltri and Niels van der Weide. Guarded Recursion in Agda via Sized Types. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{veltri_et_al:LIPIcs.FSCD.2019.32,
  author =	{Veltri, Niccol\`{o} and van der Weide, Niels},
  title =	{{Guarded Recursion in Agda via Sized Types}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.32},
  URN =		{urn:nbn:de:0030-drops-105391},
  doi =		{10.4230/LIPIcs.FSCD.2019.32},
  annote =	{Keywords: guarded recursion, type theory, semantics, coinduction, sized types}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail