Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)
Niels van der Weide. Univalent Enriched Categories and the Enriched Rezk Completion. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{vanderweide:LIPIcs.FSCD.2024.4, author = {van der Weide, Niels}, title = {{Univalent Enriched Categories and the Enriched Rezk Completion}}, booktitle = {9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)}, pages = {4:1--4:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-323-2}, ISSN = {1868-8969}, year = {2024}, volume = {299}, editor = {Rehof, Jakob}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.4}, URN = {urn:nbn:de:0030-drops-203337}, doi = {10.4230/LIPIcs.FSCD.2024.4}, annote = {Keywords: enriched categories, univalent categories, homotopy type theory, univalent foundations, Rezk completion} }
Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)
Niels van der Weide, Deivid Vale, and Cynthia Kop. Certifying Higher-Order Polynomial Interpretations. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 30:1-30:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{vanderweide_et_al:LIPIcs.ITP.2023.30, author = {van der Weide, Niels and Vale, Deivid and Kop, Cynthia}, title = {{Certifying Higher-Order Polynomial Interpretations}}, booktitle = {14th International Conference on Interactive Theorem Proving (ITP 2023)}, pages = {30:1--30:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-284-6}, ISSN = {1868-8969}, year = {2023}, volume = {268}, editor = {Naumowicz, Adam and Thiemann, Ren\'{e}}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.30}, URN = {urn:nbn:de:0030-drops-184051}, doi = {10.4230/LIPIcs.ITP.2023.30}, annote = {Keywords: higher-order rewriting, Coq, termination, formalization} }
Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)
Niels van der Weide. The Formal Theory of Monads, Univalently. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 6:1-6:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{vanderweide:LIPIcs.FSCD.2023.6, author = {van der Weide, Niels}, title = {{The Formal Theory of Monads, Univalently}}, booktitle = {8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)}, pages = {6:1--6:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-277-8}, ISSN = {1868-8969}, year = {2023}, volume = {260}, editor = {Gaboardi, Marco and van Raamsdonk, Femke}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.6}, URN = {urn:nbn:de:0030-drops-179904}, doi = {10.4230/LIPIcs.FSCD.2023.6}, annote = {Keywords: bicategory theory, univalent foundations, formalization, monads, Coq} }
Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)
Benedikt Ahrens, Dan Frumin, Marco Maggesi, and Niels van der Weide. Bicategories in Univalent Foundations. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{ahrens_et_al:LIPIcs.FSCD.2019.5, author = {Ahrens, Benedikt and Frumin, Dan and Maggesi, Marco and van der Weide, Niels}, title = {{Bicategories in Univalent Foundations}}, booktitle = {4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)}, pages = {5:1--5:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-107-8}, ISSN = {1868-8969}, year = {2019}, volume = {131}, editor = {Geuvers, Herman}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.5}, URN = {urn:nbn:de:0030-drops-105124}, doi = {10.4230/LIPIcs.FSCD.2019.5}, annote = {Keywords: bicategory theory, univalent mathematics, dependent type theory, Coq} }
Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)
Niccolò Veltri and Niels van der Weide. Guarded Recursion in Agda via Sized Types. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)
@InProceedings{veltri_et_al:LIPIcs.FSCD.2019.32, author = {Veltri, Niccol\`{o} and van der Weide, Niels}, title = {{Guarded Recursion in Agda via Sized Types}}, booktitle = {4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)}, pages = {32:1--32:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-107-8}, ISSN = {1868-8969}, year = {2019}, volume = {131}, editor = {Geuvers, Herman}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.32}, URN = {urn:nbn:de:0030-drops-105391}, doi = {10.4230/LIPIcs.FSCD.2019.32}, annote = {Keywords: guarded recursion, type theory, semantics, coinduction, sized types} }
Feedback for Dagstuhl Publishing