7 Search Results for "Allen-Zhu, Zeyuan"


Document
Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Authors: Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These are natural algorithmic problems, as symmetries are central in numerous questions and structures in physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to understand their computational complexity. Recently, Bürgisser et al. (2021) gave the first polynomial-time algorithms for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean space. In this work, motivated by theoretical and practical applications, we study the computational complexity of robust generalizations of these orbit problems, which amount to approximating the distance of orbits in ℂⁿ up to a factor γ ≥ 1. In particular, this allows deciding whether two inputs are approximately in the same orbit or far from being so. On the one hand, we prove the NP-hardness of this problem for γ = n^Ω(1/log log n) by reducing the closest vector problem for lattices to it. On the other hand, we describe algorithms for solving this problem for an approximation factor γ = exp(poly(n)). Our algorithms combine tools from invariant theory and algorithmic lattice theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if a version of the famous number-theoretic abc-conjecture holds - establishing a new and surprising connection between computational complexity and number theory.

Cite as

Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 14:1-14:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{burgisser_et_al:LIPIcs.CCC.2024.14,
  author =	{B\"{u}rgisser, Peter and Do\u{g}an, Mahmut Levent and Makam, Visu and Walter, Michael and Wigderson, Avi},
  title =	{{Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{14:1--14:48},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.14},
  URN =		{urn:nbn:de:0030-drops-204100},
  doi =		{10.4230/LIPIcs.CCC.2024.14},
  annote =	{Keywords: computational invariant theory, geometric complexity theory, orbit problems, abc-conjecture, closest vector problem}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Electrical Oblivious Routing on Expanders

Authors: Cella Florescu, Rasmus Kyng, Maximilian Probst Gutenberg, and Sushant Sachdeva

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we investigate the question of whether the electrical flow routing is a good oblivious routing scheme on an m-edge graph G = (V, E) that is a Φ-expander, i.e. where |∂ S| ≥ Φ ⋅ vol(S) for every S ⊆ V, vol(S) ≤ vol(V)/2. Beyond its simplicity and structural importance, this question is well-motivated by the current state-of-the-art of fast algorithms for 𝓁_∞ oblivious routings that reduce to the expander-case which is in turn solved by electrical flow routing. Our main result proves that the electrical routing is an O(Φ^{-1} log m)-competitive oblivious routing in the 𝓁₁- and 𝓁_∞-norms. We further observe that the oblivious routing is O(log² m)-competitive in the 𝓁₂-norm and, in fact, O(log m)-competitive if 𝓁₂-localization is O(log m) which is widely believed. Using these three upper bounds, we can smoothly interpolate to obtain upper bounds for every p ∈ [2, ∞] and q given by 1/p + 1/q = 1. Assuming 𝓁₂-localization in O(log m), we obtain that in 𝓁_p and 𝓁_q, the electrical oblivious routing is O(Φ^{-(1-2/p)}log m) competitive. Using the currently known result for 𝓁₂-localization, this ratio deteriorates by at most a sublogarithmic factor for every p, q ≠ 2. We complement our upper bounds with lower bounds that show that the electrical routing for any such p and q is Ω(Φ^{-(1-2/p)} log m)-competitive. This renders our results in 𝓁₁ and 𝓁_∞ unconditionally tight up to constants, and the result in any 𝓁_p- and 𝓁_q-norm to be tight in case of 𝓁₂-localization in O(log m).

Cite as

Cella Florescu, Rasmus Kyng, Maximilian Probst Gutenberg, and Sushant Sachdeva. Optimal Electrical Oblivious Routing on Expanders. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 65:1-65:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{florescu_et_al:LIPIcs.ICALP.2024.65,
  author =	{Florescu, Cella and Kyng, Rasmus and Gutenberg, Maximilian Probst and Sachdeva, Sushant},
  title =	{{Optimal Electrical Oblivious Routing on Expanders}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{65:1--65:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.65},
  URN =		{urn:nbn:de:0030-drops-202083},
  doi =		{10.4230/LIPIcs.ICALP.2024.65},
  annote =	{Keywords: Expanders, Oblivious routing for 𝓁\underlinep, Electrical flow routing}
}
Document
Track A: Algorithms, Complexity and Games
Better Sparsifiers for Directed Eulerian Graphs

Authors: Sushant Sachdeva, Anvith Thudi, and Yibin Zhao

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Spectral sparsification for directed Eulerian graphs is a key component in the design of fast algorithms for solving directed Laplacian linear systems. Directed Laplacian linear system solvers are crucial algorithmic primitives to fast computation of fundamental problems on random walks, such as computing stationary distributions, hitting and commute times, and personalized PageRank vectors. While spectral sparsification is well understood for undirected graphs and it is known that for every graph G, (1+ε)-sparsifiers with O(nε^{-2}) edges exist [Batson-Spielman-Srivastava, STOC '09] (which is optimal), the best known constructions of Eulerian sparsifiers require Ω(nε^{-2}log⁴ n) edges and are based on short-cycle decompositions [Chu et al., FOCS '18]. In this paper, we give improved constructions of Eulerian sparsifiers, specifically: 1) We show that for every directed Eulerian graph G→, there exists an Eulerian sparsifier with O(nε^{-2} log² n log²log n + nε^{-4/3}log^{8/3} n) edges. This result is based on combining short-cycle decompositions [Chu-Gao-Peng-Sachdeva-Sawlani-Wang, FOCS '18, SICOMP] and [Parter-Yogev, ICALP '19], with recent progress on the matrix Spencer conjecture [Bansal-Meka-Jiang, STOC '23]. 2) We give an improved analysis of the constructions based on short-cycle decompositions, giving an m^{1+δ}-time algorithm for any constant δ > 0 for constructing Eulerian sparsifiers with O(nε^{-2}log³ n) edges.

Cite as

Sushant Sachdeva, Anvith Thudi, and Yibin Zhao. Better Sparsifiers for Directed Eulerian Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 119:1-119:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sachdeva_et_al:LIPIcs.ICALP.2024.119,
  author =	{Sachdeva, Sushant and Thudi, Anvith and Zhao, Yibin},
  title =	{{Better Sparsifiers for Directed Eulerian Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{119:1--119:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.119},
  URN =		{urn:nbn:de:0030-drops-202628},
  doi =		{10.4230/LIPIcs.ICALP.2024.119},
  annote =	{Keywords: Graph algorithms, Linear algebra and computation, Discrepancy theory}
}
Document
Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration

Authors: Michael B. Cohen, Aaron Sidford, and Kevin Tian

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We show that standard extragradient methods (i.e. mirror prox [Arkadi Nemirovski, 2004] and dual extrapolation [Yurii Nesterov, 2007]) recover optimal accelerated rates for first-order minimization of smooth convex functions. To obtain this result we provide fine-grained characterization of the convergence rates of extragradient methods for solving monotone variational inequalities in terms of a natural condition we call relative Lipschitzness. We further generalize this framework to handle local and randomized notions of relative Lipschitzness and thereby recover rates for box-constrained 𝓁_∞ regression based on area convexity [Jonah Sherman, 2017] and complexity bounds achieved by accelerated (randomized) coordinate descent [Zeyuan {Allen Zhu} et al., 2016; Yurii Nesterov and Sebastian U. Stich, 2017] for smooth convex function minimization.

Cite as

Michael B. Cohen, Aaron Sidford, and Kevin Tian. Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 62:1-62:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.ITCS.2021.62,
  author =	{Cohen, Michael B. and Sidford, Aaron and Tian, Kevin},
  title =	{{Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{62:1--62:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.62},
  URN =		{urn:nbn:de:0030-drops-136011},
  doi =		{10.4230/LIPIcs.ITCS.2021.62},
  annote =	{Keywords: Variational inequalities, minimax optimization, acceleration, 𝓁\underline∞ regression}
}
Document
Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent

Authors: Zeyuan Allen-Zhu and Lorenzo Orecchia

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
First-order methods play a central role in large-scale machine learning. Even though many variations exist, each suited to a particular problem, almost all such methods fundamentally rely on two types of algorithmic steps: gradient descent, which yields primal progress, and mirror descent, which yields dual progress. We observe that the performances of gradient and mirror descent are complementary, so that faster algorithms can be designed by "linearly coupling" the two. We show how to reconstruct Nesterov's accelerated gradient methods using linear coupling, which gives a cleaner interpretation than Nesterov's original proofs. We also discuss the power of linear coupling by extending it to many other settings that Nesterov's methods cannot apply to.

Cite as

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{allenzhu_et_al:LIPIcs.ITCS.2017.3,
  author =	{Allen-Zhu, Zeyuan and Orecchia, Lorenzo},
  title =	{{Linear Coupling: An Ultimate Unification of Gradient and Mirror Descent}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{3:1--3:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.3},
  URN =		{urn:nbn:de:0030-drops-81850},
  doi =		{10.4230/LIPIcs.ITCS.2017.3},
  annote =	{Keywords: linear coupling, gradient descent, mirror descent, acceleration}
}
Document
Optimization Algorithms for Faster Computational Geometry

Authors: Zeyuan Allen-Zhu, Zhenyu Liao, and Yang Yuan

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
We study two fundamental problems in computational geometry: finding the maximum inscribed ball (MaxIB) inside a bounded polyhedron defined by m hyperplanes, and the minimum enclosing ball (MinEB) of a set of n points, both in d-dimensional space. We improve the running time of iterative algorithms on MaxIB from ~O(m*d*alpha^3/epsilon^3) to ~O(m*d + m*sqrt(d)*alpha/epsilon), a speed-up up to ~O(sqrt(d)*alpha^2/epsilon^2), and MinEB from ~O(n*d/sqrt(epsilon)) to ~O(n*d + n*sqrt(d)/sqrt(epsilon)), a speed-up up to ~O(sqrt(d)). Our improvements are based on a novel saddle-point optimization framework. We propose a new algorithm L1L2SPSolver for solving a class of regularized saddle-point problems, and apply a randomized Hadamard space rotation which is a technique borrowed from compressive sensing. Interestingly, the motivation of using Hadamard rotation solely comes from our optimization view but not the original geometry problem: indeed, it is not immediately clear why MaxIB or MinEB, as a geometric problem, should be easier to solve if we rotate the space by a unitary matrix. We hope that our optimization perspective sheds lights on solving other geometric problems as well.

Cite as

Zeyuan Allen-Zhu, Zhenyu Liao, and Yang Yuan. Optimization Algorithms for Faster Computational Geometry. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 53:1-53:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{allenzhu_et_al:LIPIcs.ICALP.2016.53,
  author =	{Allen-Zhu, Zeyuan and Liao, Zhenyu and Yuan, Yang},
  title =	{{Optimization Algorithms for Faster Computational Geometry}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{53:1--53:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.53},
  URN =		{urn:nbn:de:0030-drops-63325},
  doi =		{10.4230/LIPIcs.ICALP.2016.53},
  annote =	{Keywords: maximum inscribed balls, minimum enclosing balls, approximation algorithms}
}
Document
Restricted Isometry Property for General p-Norms

Authors: Zeyuan Allen-Zhu, Rati Gelashvili, and Ilya Razenshteyn

Published in: LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)


Abstract
The Restricted Isometry Property (RIP) is a fundamental property of a matrix which enables sparse recovery. Informally, an m x n matrix satisfies RIP of order k for the L_p norm, if |Ax|_p is approximately |x|_p for every x with at most k non-zero coordinates. For every 1 <= p < infty we obtain almost tight bounds on the minimum number of rows m necessary for the RIP property to hold. Prior to this work, only the cases p = 1, 1 + 1/log(k), and 2 were studied. Interestingly, our results show that the case p=2 is a "singularity" point: the optimal number of rows m is Theta(k^p) for all p in [1, infty)-{2}, as opposed to Theta(k) for k=2. We also obtain almost tight bounds for the column sparsity of RIP matrices and discuss implications of our results for the Stable Sparse Recovery problem.

Cite as

Zeyuan Allen-Zhu, Rati Gelashvili, and Ilya Razenshteyn. Restricted Isometry Property for General p-Norms. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 451-460, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{allenzhu_et_al:LIPIcs.SOCG.2015.451,
  author =	{Allen-Zhu, Zeyuan and Gelashvili, Rati and Razenshteyn, Ilya},
  title =	{{Restricted Isometry Property for General p-Norms}},
  booktitle =	{31st International Symposium on Computational Geometry (SoCG 2015)},
  pages =	{451--460},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-83-5},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{34},
  editor =	{Arge, Lars and Pach, J\'{a}nos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.451},
  URN =		{urn:nbn:de:0030-drops-51273},
  doi =		{10.4230/LIPIcs.SOCG.2015.451},
  annote =	{Keywords: compressive sensing, dimension reduction, linear algebra, high-dimensional geometry}
}
  • Refine by Author
  • 3 Allen-Zhu, Zeyuan
  • 2 Sachdeva, Sushant
  • 1 Bürgisser, Peter
  • 1 Cohen, Michael B.
  • 1 Doğan, Mahmut Levent
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Algebraic algorithms
  • 1 Computing methodologies → Combinatorial algorithms
  • 1 Computing methodologies → Linear algebra algorithms
  • 1 Mathematics of computing → Computations on matrices
  • 1 Mathematics of computing → Convex optimization
  • Show More...

  • Refine by Keyword
  • 2 acceleration
  • 1 Discrepancy theory
  • 1 Electrical flow routing
  • 1 Expanders
  • 1 Graph algorithms
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2024
  • 1 2015
  • 1 2016
  • 1 2017
  • 1 2021