14 Search Results for "Austrin, Per"


Document
APPROX
On the NP-Hardness Approximation Curve for Max-2Lin(2)

Authors: Björn Martinsson

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In the Max-2Lin(2) problem you are given a system of equations on the form x_i + x_j ≡ b mod 2, and your objective is to find an assignment that satisfies as many equations as possible. Let c ∈ [0.5, 1] denote the maximum fraction of satisfiable equations. In this paper we construct a curve s (c) such that it is NP-hard to find a solution satisfying at least a fraction s of equations. This curve either matches or improves all of the previously known inapproximability NP-hardness results for Max-2Lin(2). In particular, we show that if c ⩾ 0.9232 then (1 - s(c))/(1 - c) > 1.48969, which improves the NP-hardness inapproximability constant for the min deletion version of Max-2Lin(2). Our work complements the work of O'Donnell and Wu that studied the same question assuming the Unique Games Conjecture. Similar to earlier inapproximability results for Max-2Lin(2), we use a gadget reduction from the (2^k - 1)-ary Hadamard predicate. Previous works used k ranging from 2 to 4. Our main result is a procedure for taking a gadget for some fixed k, and use it as a building block to construct better and better gadgets as k tends to infinity. Our method can be used to boost the result of both smaller gadgets created by hand (k = 3) or larger gadgets constructed using a computer (k = 4).

Cite as

Björn Martinsson. On the NP-Hardness Approximation Curve for Max-2Lin(2). In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 11:1-11:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{martinsson:LIPIcs.APPROX/RANDOM.2024.11,
  author =	{Martinsson, Bj\"{o}rn},
  title =	{{On the NP-Hardness Approximation Curve for Max-2Lin(2)}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{11:1--11:38},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.11},
  URN =		{urn:nbn:de:0030-drops-210049},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.11},
  annote =	{Keywords: Inapproximability, NP-hardness, 2Lin(2), Max-Cut, Gadget}
}
Document
RANDOM
Approximating the Number of Relevant Variables in a Parity Implies Proper Learning

Authors: Nader H. Bshouty and George Haddad

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Consider the model where we can access a parity function through random uniform labeled examples in the presence of random classification noise. In this paper, we show that approximating the number of relevant variables in the parity function is as hard as properly learning parities. More specifically, let γ:ℝ^+ → ℝ^+, where γ(x) ≥ x, be any strictly increasing function. In our first result, we show that from any polynomial-time algorithm that returns a γ-approximation, D (i.e., γ^{-1}(d(f)) ≤ D ≤ γ(d(f))), of the number of relevant variables d(f) for any parity f, we can, in polynomial time, construct a solution to the long-standing open problem of polynomial-time learning k(n)-sparse parities (parities with k(n) ≤ n relevant variables), where k(n) = ω_n(1). In our second result, we show that from any T(n)-time algorithm that, for any parity f, returns a γ-approximation of the number of relevant variables d(f) of f, we can, in polynomial time, construct a poly(Γ(n))T(Γ(n)²)-time algorithm that properly learns parities, where Γ(x) = γ(γ(x)). If T(Γ(n)²) = exp({o(n/log n)}), this would resolve another long-standing open problem of properly learning parities in the presence of random classification noise in time exp(o(n/log n)).

Cite as

Nader H. Bshouty and George Haddad. Approximating the Number of Relevant Variables in a Parity Implies Proper Learning. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bshouty_et_al:LIPIcs.APPROX/RANDOM.2024.38,
  author =	{Bshouty, Nader H. and Haddad, George},
  title =	{{Approximating the Number of Relevant Variables in a Parity Implies Proper Learning}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{38:1--38:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.38},
  URN =		{urn:nbn:de:0030-drops-210316},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.38},
  annote =	{Keywords: PAC Learning, Random Classification Noise, Uniform Distribution, Parity, Sparcity Approximation}
}
Document
MaxSAT Resolution with Inclusion Redundancy

Authors: Ilario Bonacina, Maria Luisa Bonet, and Massimo Lauria

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Popular redundancy rules for SAT are not necessarily sound for MaxSAT. The works of [Bonacina-Bonet-Buss-Lauria'24] and [Ihalainen-Berg-Järvisalo'22] proposed ways to adapt them, but required specific encodings and more sophisticated checks during proof verification. Here, we propose a different way to adapt redundancy rules from SAT to MaxSAT. Our rules do not require specific encodings, their correctness is simpler to check, but they are slightly less expressive. However, the proposed redundancy rules, when added to MaxSAT-Resolution, are already strong enough to capture Branch-and-bound algorithms, enable short proofs of the optimal cost of notable principles (e.g., the Pigeonhole Principle and the Parity Principle), and allow to break simple symmetries (e.g., XOR-ification does not make formulas harder).

Cite as

Ilario Bonacina, Maria Luisa Bonet, and Massimo Lauria. MaxSAT Resolution with Inclusion Redundancy. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonacina_et_al:LIPIcs.SAT.2024.7,
  author =	{Bonacina, Ilario and Bonet, Maria Luisa and Lauria, Massimo},
  title =	{{MaxSAT Resolution with Inclusion Redundancy}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.7},
  URN =		{urn:nbn:de:0030-drops-205298},
  doi =		{10.4230/LIPIcs.SAT.2024.7},
  annote =	{Keywords: MaxSAT, Redundancy, MaxSAT resolution, Branch-and-bound, Pigeonhole principle, Parity Principle}
}
Document
Solving Unique Games over Globally Hypercontractive Graphs

Authors: Mitali Bafna and Dor Minzer

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which are graphs that are not small set expanders but admit a useful and succinct characterization of all small sets that violate the small-set expansion property. This class of graphs includes the Johnson and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and their generalizations via high-dimensional expanders. We show new rounding techniques for higher degree sum-of-squares (SoS) relaxations for worst-case optimization. In particular, our algorithm shows how to round "low-entropy" pseudodistributions, broadly extending the algorithmic framework of [Mitali Bafna et al., 2021]. At a high level, [Mitali Bafna et al., 2021] showed how to round pseudodistributions for problems where there is a "unique" good solution. We extend their framework by exhibiting a rounding for problems where there might be "few good solutions". Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights the importance of graphs that lack such a characterization in the context of PCP reductions for UG.

Cite as

Mitali Bafna and Dor Minzer. Solving Unique Games over Globally Hypercontractive Graphs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bafna_et_al:LIPIcs.CCC.2024.3,
  author =	{Bafna, Mitali and Minzer, Dor},
  title =	{{Solving Unique Games over Globally Hypercontractive Graphs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.3},
  URN =		{urn:nbn:de:0030-drops-203996},
  doi =		{10.4230/LIPIcs.CCC.2024.3},
  annote =	{Keywords: unique games, approximation algorithms}
}
Document
Track A: Algorithms, Complexity and Games
A Faster Algorithm for Pigeonhole Equal Sums

Authors: Ce Jin and Hongxun Wu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An important area of research in exact algorithms is to solve Subset-Sum-type problems faster than meet-in-middle. In this paper we study Pigeonhole Equal Sums, a total search problem proposed by Papadimitriou (1994): given n positive integers w₁,… ,w_n of total sum ∑_{i = 1}ⁿ w_i < 2ⁿ-1, the task is to find two distinct subsets A, B ⊆ [n] such that ∑_{i ∈ A}w_i = ∑_{i ∈ B}w_i. Similar to the status of the Subset Sum problem, the best known algorithm for Pigeonhole Equal Sums runs in O^*(2^{n/2}) time, via either meet-in-middle or dynamic programming (Allcock, Hamoudi, Joux, Klingelhöfer, and Santha, 2022). Our main result is an improved algorithm for Pigeonhole Equal Sums in O^*(2^{0.4n}) time. We also give a polynomial-space algorithm in O^*(2^{0.75n}) time. Unlike many previous works in this area, our approach does not use the representation method, but rather exploits a simple structural characterization of input instances with few solutions.

Cite as

Ce Jin and Hongxun Wu. A Faster Algorithm for Pigeonhole Equal Sums. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 94:1-94:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jin_et_al:LIPIcs.ICALP.2024.94,
  author =	{Jin, Ce and Wu, Hongxun},
  title =	{{A Faster Algorithm for Pigeonhole Equal Sums}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{94:1--94:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.94},
  URN =		{urn:nbn:de:0030-drops-202375},
  doi =		{10.4230/LIPIcs.ICALP.2024.94},
  annote =	{Keywords: Subset Sum, Pigeonhole, PPP}
}
Document
Track A: Algorithms, Complexity and Games
Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH

Authors: Shuangle Li, Bingkai Lin, and Yuwei Liu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we present a new gap-creating randomized self-reduction for the parameterized Maximum Likelihood Decoding problem over 𝔽_p (k-MLD_p). The reduction takes a k-MLD_p instance with k⋅ n d-dimensional vectors as input, runs in O(d2^{O(k)}n^{1.01}) time for some computable function f, outputs a (3/2-ε)-Gap-k'-MLD_p instance for any ε > 0, where k' = O(k²log k). Using this reduction, we show that assuming the randomized Exponential Time Hypothesis (ETH), no algorithms can approximate k-MLD_p (and therefore its dual problem k-NCP_p) within factor (3/2-ε) in f(k)⋅ n^{o(√{k/log k})} time for any ε > 0. We then use reduction by Bhattacharyya, Ghoshal, Karthik and Manurangsi (ICALP 2018) to amplify the (3/2-ε)-gap to any constant. As a result, we show that assuming ETH, no algorithms can approximate k-NCP_p and k-MDP_p within γ-factor in f(k)⋅ n^{o(k^{ε_γ})} time for some constant ε_γ > 0. Combining with the gap-preserving reduction by Bennett, Cheraghchi, Guruswami and Ribeiro (STOC 2023), we also obtain similar lower bounds for k-MDP_p, k-CVP_p and k-SVP_p. These results improve upon the previous f(k)⋅ n^{Ω(poly log k)} lower bounds for these problems under ETH using reductions by Bhattacharyya et al. (J.ACM 2021) and Bennett et al. (STOC 2023).

Cite as

Shuangle Li, Bingkai Lin, and Yuwei Liu. Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 107:1-107:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ICALP.2024.107,
  author =	{Li, Shuangle and Lin, Bingkai and Liu, Yuwei},
  title =	{{Improved Lower Bounds for Approximating Parameterized Nearest Codeword and Related Problems Under ETH}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{107:1--107:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.107},
  URN =		{urn:nbn:de:0030-drops-202500},
  doi =		{10.4230/LIPIcs.ICALP.2024.107},
  annote =	{Keywords: Nearest Codeword Problem, Hardness of Approximations, Fine-grained Complexity, Parameterized Complexity, Minimum Distance Problem, Shortest Vector Problem}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Solving Promise Equations over Monoids and Groups

Authors: Alberto Larrauri and Stanislav Živný

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We give a complete complexity classification for the problem of finding a solution to a given system of equations over a fixed finite monoid, given that a solution over a more restricted monoid exists. As a corollary, we obtain a complexity classification for the same problem over groups.

Cite as

Alberto Larrauri and Stanislav Živný. Solving Promise Equations over Monoids and Groups. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 146:1-146:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{larrauri_et_al:LIPIcs.ICALP.2024.146,
  author =	{Larrauri, Alberto and \v{Z}ivn\'{y}, Stanislav},
  title =	{{Solving Promise Equations over Monoids and Groups}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{146:1--146:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.146},
  URN =		{urn:nbn:de:0030-drops-202893},
  doi =		{10.4230/LIPIcs.ICALP.2024.146},
  annote =	{Keywords: constraint satisfaction, promise constraint satisfaction, equations, minions}
}
Document
Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem

Authors: Per Austrin and Kilian Risse

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS) proof system. Our main result is that for every Boolean function f: {0,1}ⁿ → {0,1}, SoS requires degree Ω(s^{1-ε}) to prove that f does not have circuits of size s (for any s > poly(n)). As a corollary we obtain that there are no low degree SoS proofs of the statement NP ⊈ P/poly. We also show that for any 0 < α < 1 there are Boolean functions with circuit complexity larger than 2^{n^α} but SoS requires size 2^{2^Ω(n^α)} to prove this. In addition we prove analogous results on the minimum monotone circuit size for monotone Boolean slice functions. Our approach is quite general. Namely, we show that if a proof system Q has strong enough constraint satisfaction problem lower bounds that only depend on good expansion of the constraint-variable incidence graph and, furthermore, Q is expressive enough that variables can be substituted by local Boolean functions, then the MCSP problem is hard for Q.

Cite as

Per Austrin and Kilian Risse. Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 31:1-31:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.CCC.2023.31,
  author =	{Austrin, Per and Risse, Kilian},
  title =	{{Sum-Of-Squares Lower Bounds for the Minimum Circuit Size Problem}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{31:1--31:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.31},
  URN =		{urn:nbn:de:0030-drops-183011},
  doi =		{10.4230/LIPIcs.CCC.2023.31},
  annote =	{Keywords: Proof Complexity, Sum of Squares, Minimum Circuit Size Problem}
}
Document
APPROX
The Biased Homogeneous r-Lin Problem

Authors: Suprovat Ghoshal

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
The p-biased Homogeneous r-Lin problem (Hom-r-Lin_p) is the following: given a homogeneous system of r-variable equations over m{F}₂, the goal is to find an assignment of relative weight p that satisfies the maximum number of equations. In a celebrated work, Håstad (JACM 2001) showed that the unconstrained variant of this i.e., Max-3-Lin, is hard to approximate beyond a factor of 1/2. This is also tight due to the naive random guessing algorithm which sets every variable uniformly from {0,1}. Subsequently, Holmerin and Khot (STOC 2004) showed that the same holds for the balanced Hom-r-Lin problem as well. In this work, we explore the approximability of the Hom-r-Lin_p problem beyond the balanced setting (i.e., p ≠ 1/2), and investigate whether the (p-biased) random guessing algorithm is optimal for every p. Our results include the following: - The Hom-r-Lin_p problem has no efficient 1/2 + 1/2 (1 - 2p)^{r-2} + ε-approximation algorithm for every p if r is even, and for p ∈ (0,1/2] if r is odd, unless NP ⊂ ∪_{ε>0}DTIME(2^{n^ε}). - For any r and any p, there exists an efficient 1/2 (1 - e^{-2})-approximation algorithm for Hom-r-Lin_p. We show that this is also tight for odd values of r (up to o_r(1)-additive factors) assuming the Unique Games Conjecture. Our results imply that when r is even, then for large values of r, random guessing is near optimal for every p. On the other hand, when r is odd, our results illustrate an interesting contrast between the regimes p ∈ (0,1/2) (where random guessing is near optimal) and p → 1 (where random guessing is far from optimal). A key technical contribution of our work is a generalization of Håstad’s 3-query dictatorship test to the p-biased setting.

Cite as

Suprovat Ghoshal. The Biased Homogeneous r-Lin Problem. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 47:1-47:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ghoshal:LIPIcs.APPROX/RANDOM.2022.47,
  author =	{Ghoshal, Suprovat},
  title =	{{The Biased Homogeneous r-Lin Problem}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{47:1--47:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.47},
  URN =		{urn:nbn:de:0030-drops-171695},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.47},
  annote =	{Keywords: Biased Approximation Resistance, Constraint Satisfaction Problems}
}
Document
Track A: Algorithms, Complexity and Games
Conditional Dichotomy of Boolean Ordered Promise CSPs

Authors: Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Promise Constraint Satisfaction Problems (PCSPs) are a generalization of Constraint Satisfaction Problems (CSPs) where each predicate has a strong and a weak form and given a CSP instance, the objective is to distinguish if the strong form can be satisfied vs. even the weak form cannot be satisfied. Since their formal introduction by Austrin, Guruswami, and Håstad [Per Austrin et al., 2017], there has been a flurry of works on PCSPs, including recent breakthroughs in approximate graph coloring [Barto et al., 2018; Andrei A. Krokhin and Jakub Opršal, 2019; Marcin Wrochna and Stanislav Zivný, 2020]. The key tool in studying PCSPs is the algebraic framework developed in the context of CSPs where the closure properties of the satisfying solutions known as polymorphisms are analyzed. The polymorphisms of PCSPs are significantly richer than CSPs - even in the Boolean case, we still do not know if there exists a dichotomy result for PCSPs analogous to Schaefer’s dichotomy result [Thomas J. Schaefer, 1978] for CSPs. In this paper, we study a special case of Boolean PCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have the predicate x ≤ y. In the algebraic framework, this is the special case of Boolean PCSPs when the polymorphisms are monotone functions. We prove that Boolean Ordered PCSPs exhibit a computational dichotomy assuming the Rich 2-to-1 Conjecture [Mark Braverman et al., 2021] which is a perfect completeness surrogate of the Unique Games Conjecture. In particular, assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP can be solved in polynomial time if for every ε > 0, it has polymorphisms where each coordinate has Shapley value at most ε, else it is NP-hard. The algorithmic part of our dichotomy result is based on a structural lemma showing that Boolean monotone functions with each coordinate having low Shapley value have arbitrarily large threshold functions as minors. The hardness part proceeds by showing that the Shapley value is consistent under a uniformly random 2-to-1 minor. As a structural result of independent interest, we construct an example to show that the Shapley value can be inconsistent under an adversarial 2-to-1 minor.

Cite as

Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. Conditional Dichotomy of Boolean Ordered Promise CSPs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 37:1-37:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{brakensiek_et_al:LIPIcs.ICALP.2021.37,
  author =	{Brakensiek, Joshua and Guruswami, Venkatesan and Sandeep, Sai},
  title =	{{Conditional Dichotomy of Boolean Ordered Promise CSPs}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{37:1--37:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.37},
  URN =		{urn:nbn:de:0030-drops-141060},
  doi =		{10.4230/LIPIcs.ICALP.2021.37},
  annote =	{Keywords: promise constraint satisfaction, Boolean ordered PCSP, Shapley value, rich 2-to-1 conjecture, random minor}
}
Document
APPROX
Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

Authors: Per Austrin and Aleksa Stanković

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem.

Cite as

Per Austrin and Aleksa Stanković. Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 24:1-24:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.APPROX-RANDOM.2019.24,
  author =	{Austrin, Per and Stankovi\'{c}, Aleksa},
  title =	{{Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{24:1--24:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.24},
  URN =		{urn:nbn:de:0030-drops-112394},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.24},
  annote =	{Keywords: Constraint satisfaction problems, global cardinality constraints, semidefinite programming, inapproximability, Unique Games Conjecture, Max-Cut, Max-2-Sat}
}
Document
Tensor Network Complexity of Multilinear Maps

Authors: Per Austrin, Petteri Kaski, and Kaie Kubjas

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
We study tensor networks as a model of arithmetic computation for evaluating multilinear maps. These capture any algorithm based on low border rank tensor decompositions, such as O(n^{omega+epsilon}) time matrix multiplication, and in addition many other algorithms such as O(n log n) time discrete Fourier transform and O^*(2^n) time for computing the permanent of a matrix. However tensor networks sometimes yield faster algorithms than those that follow from low-rank decompositions. For instance the fastest known O(n^{(omega +epsilon)t}) time algorithms for counting 3t-cliques can be implemented with tensor networks, even though the underlying tensor has border rank n^{3t} for all t >= 2. For counting homomorphisms of a general pattern graph P into a host graph on n vertices we obtain an upper bound of O(n^{(omega+epsilon)bw(P)/2}) where bw(P) is the branchwidth of P. This essentially matches the bound for counting cliques, and yields small improvements over previous algorithms for many choices of P. While powerful, the model still has limitations, and we are able to show a number of unconditional lower bounds for various multilinear maps, including: b) an Omega(n^{bw(P)}) time lower bound for counting homomorphisms from P to an n-vertex graph, matching the upper bound if omega = 2. In particular for P a v-clique this yields an Omega(n^{ceil[2v/3]}) time lower bound for counting v-cliques, and for P a k-uniform v-hyperclique we obtain an Omega(n^v) time lower bound for k >= 3, ruling out tensor networks as an approach to obtaining non-trivial algorithms for hyperclique counting and the Max-3-CSP problem. c) an Omega(2^{0.918n}) time lower bound for the permanent of an n x n matrix.

Cite as

Per Austrin, Petteri Kaski, and Kaie Kubjas. Tensor Network Complexity of Multilinear Maps. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.ITCS.2019.7,
  author =	{Austrin, Per and Kaski, Petteri and Kubjas, Kaie},
  title =	{{Tensor Network Complexity of Multilinear Maps}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.7},
  URN =		{urn:nbn:de:0030-drops-101006},
  doi =		{10.4230/LIPIcs.ITCS.2019.7},
  annote =	{Keywords: arithmetic complexity, lower bound, multilinear map, tensor network}
}
Document
Dense Subset Sum May Be the Hardest

Authors: Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof

Published in: LIPIcs, Volume 47, 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)


Abstract
The SUBSET SUM problem asks whether a given set of n positive integers contains a subset of elements that sum up to a given target t. It is an outstanding open question whether the O^*(2^{n/2})-time algorithm for SUBSET SUM by Horowitz and Sahni [J. ACM 1974] can be beaten in the worst-case setting by a "truly faster", O^*(2^{(0.5-delta)*n})-time algorithm, with some constant delta > 0. Continuing an earlier work [STACS 2015], we study SUBSET SUM parameterized by the maximum bin size beta, defined as the largest number of subsets of the n input integers that yield the same sum. For every epsilon > 0 we give a truly faster algorithm for instances with beta <= 2^{(0.5-epsilon)*n}, as well as instances with beta >= 2^{0.661n}. Consequently, we also obtain a characterization in terms of the popular density parameter n/log_2(t): if all instances of density at least 1.003 admit a truly faster algorithm, then so does every instance. This goes against the current intuition that instances of density 1 are the hardest, and therefore is a step toward answering the open question in the affirmative. Our results stem from a novel combinatorial analysis of mixings of earlier algorithms for SUBSET SUM and a study of an extremal question in additive combinatorics connected to the problem of Uniquely Decodable Code Pairs in information theory.

Cite as

Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Dense Subset Sum May Be the Hardest. In 33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 47, pp. 13:1-13:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.STACS.2016.13,
  author =	{Austrin, Per and Kaski, Petteri and Koivisto, Mikko and Nederlof, Jesper},
  title =	{{Dense Subset Sum May Be the Hardest}},
  booktitle =	{33rd Symposium on Theoretical Aspects of Computer Science (STACS 2016)},
  pages =	{13:1--13:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-001-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{47},
  editor =	{Ollinger, Nicolas and Vollmer, Heribert},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2016.13},
  URN =		{urn:nbn:de:0030-drops-57143},
  doi =		{10.4230/LIPIcs.STACS.2016.13},
  annote =	{Keywords: subset sum, additive combinatorics, exponential-time algorithm, homo-morphic hashing, littlewood–offord problem}
}
Document
Subset Sum in the Absence of Concentration

Authors: Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
We study the exact time complexity of the Subset Sum problem. Our focus is on instances that lack additive structure in the sense that the sums one can form from the subsets of the given integers are not strongly concentrated on any particular integer value. We present a randomized algorithm that runs in O(2^0.3399nB^4) time on instances with the property that no value can arise as a sum of more than B different subsets of the n given integers.

Cite as

Per Austrin, Petteri Kaski, Mikko Koivisto, and Jesper Nederlof. Subset Sum in the Absence of Concentration. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 48-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{austrin_et_al:LIPIcs.STACS.2015.48,
  author =	{Austrin, Per and Kaski, Petteri and Koivisto, Mikko and Nederlof, Jesper},
  title =	{{Subset Sum in the Absence of Concentration}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{48--61},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.48},
  URN =		{urn:nbn:de:0030-drops-49034},
  doi =		{10.4230/LIPIcs.STACS.2015.48},
  annote =	{Keywords: subset sum, additive combinatorics, exponential-time algorithm, homomorphic hashing, Littlewood--Offord problem}
}
  • Refine by Author
  • 5 Austrin, Per
  • 3 Kaski, Petteri
  • 2 Koivisto, Mikko
  • 2 Nederlof, Jesper
  • 1 Bafna, Mitali
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Problems, reductions and completeness
  • 4 Theory of computation → Approximation algorithms analysis
  • 3 Theory of computation → Constraint and logic programming
  • 2 Theory of computation → Complexity theory and logic
  • 2 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 2 Max-Cut
  • 2 additive combinatorics
  • 2 exponential-time algorithm
  • 2 promise constraint satisfaction
  • 2 subset sum
  • Show More...

  • Refine by Type
  • 14 document

  • Refine by Publication Year
  • 7 2024
  • 2 2019
  • 1 2015
  • 1 2016
  • 1 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail