# 9 Search Results for "Chiu, Man-Kwun"

Document
##### Drawings of Complete Multipartite Graphs up to Triangle Flips

Authors: Oswin Aichholzer, Man-Kwun Chiu, Hung P. Hoang, Michael Hoffmann, Jan Kynčl, Yannic Maus, Birgit Vogtenhuber, and Alexandra Weinberger

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)

##### Abstract
For a drawing of a labeled graph, the rotation of a vertex or crossing is the cyclic order of its incident edges, represented by the labels of their other endpoints. The extended rotation system (ERS) of the drawing is the collection of the rotations of all vertices and crossings. A drawing is simple if each pair of edges has at most one common point. Gioan’s Theorem states that for any two simple drawings of the complete graph K_n with the same crossing edge pairs, one drawing can be transformed into the other by a sequence of triangle flips (a.k.a. Reidemeister moves of Type 3). This operation refers to the act of moving one edge of a triangular cell formed by three pairwise crossing edges over the opposite crossing of the cell, via a local transformation. We investigate to what extent Gioan-type theorems can be obtained for wider classes of graphs. A necessary (but in general not sufficient) condition for two drawings of a graph to be transformable into each other by a sequence of triangle flips is that they have the same ERS. As our main result, we show that for the large class of complete multipartite graphs, this necessary condition is in fact also sufficient. We present two different proofs of this result, one of which is shorter, while the other one yields a polynomial time algorithm for which the number of needed triangle flips for graphs on n vertices is bounded by O(n^{16}). The latter proof uses a Carathéodory-type theorem for simple drawings of complete multipartite graphs, which we believe to be of independent interest. Moreover, we show that our Gioan-type theorem for complete multipartite graphs is essentially tight in the following sense: For the complete bipartite graph K_{m,n} minus two edges and K_{m,n} plus one edge for any m,n ≥ 4, as well as K_n minus a 4-cycle for any n ≥ 5, there exist two simple drawings with the same ERS that cannot be transformed into each other using triangle flips. So having the same ERS does not remain sufficient when removing or adding very few edges.

##### Cite as

Oswin Aichholzer, Man-Kwun Chiu, Hung P. Hoang, Michael Hoffmann, Jan Kynčl, Yannic Maus, Birgit Vogtenhuber, and Alexandra Weinberger. Drawings of Complete Multipartite Graphs up to Triangle Flips. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 6:1-6:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)

@InProceedings{aichholzer_et_al:LIPIcs.SoCG.2023.6,
author =	{Aichholzer, Oswin and Chiu, Man-Kwun and Hoang, Hung P. and Hoffmann, Michael and Kyn\v{c}l, Jan and Maus, Yannic and Vogtenhuber, Birgit and Weinberger, Alexandra},
title =	{{Drawings of Complete Multipartite Graphs up to Triangle Flips}},
booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
pages =	{6:1--6:16},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-273-0},
ISSN =	{1868-8969},
year =	{2023},
volume =	{258},
editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.6},
URN =		{urn:nbn:de:0030-drops-178563},
doi =		{10.4230/LIPIcs.SoCG.2023.6},
annote =	{Keywords: Simple drawings, simple topological graphs, complete graphs, multipartite graphs, k-partite graphs, bipartite graphs, Gioan’s Theorem, triangle flips, Reidemeister moves}
}
Document
##### Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays

Authors: Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)

##### Abstract
We consider the problem of digitalizing Euclidean segments. Specifically, we look for a constructive method to connect any two points in ℤ^d. The construction must be consistent (that is, satisfy the natural extension of the Euclidean axioms) while resembling them as much as possible. Previous work has shown asymptotically tight results in two dimensions with Θ(log N) error, where resemblance between segments is measured with the Hausdorff distance, and N is the L₁ distance between the two points. This construction was considered tight because of a Ω(log N) lower bound that applies to any consistent construction in ℤ². In this paper we observe that the lower bound does not directly extend to higher dimensions. We give an alternative argument showing that any consistent construction in d dimensions must have Ω(log^{1/(d-1)} N) error. We tie the error of a consistent construction in high dimensions to the error of similar weak constructions in two dimensions (constructions for which some points need not satisfy all the axioms). This not only opens the possibility for having constructions with o(log N) error in high dimensions, but also opens up an interesting line of research in the tradeoff between the number of axiom violations and the error of the construction. In order to show our lower bound, we also consider a colored variation of the concept of discrepancy of a set of points that we find of independent interest.

##### Cite as

Man-Kwun Chiu, Matias Korman, Martin Suderland, and Takeshi Tokuyama. Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 34:1-34:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

@InProceedings{chiu_et_al:LIPIcs.ESA.2020.34,
author =	{Chiu, Man-Kwun and Korman, Matias and Suderland, Martin and Tokuyama, Takeshi},
title =	{{Distance Bounds for High Dimensional Consistent Digital Rays and 2-D Partially-Consistent Digital Rays}},
booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
pages =	{34:1--34:22},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-162-7},
ISSN =	{1868-8969},
year =	{2020},
volume =	{173},
editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.34},
URN =		{urn:nbn:de:0030-drops-129002},
doi =		{10.4230/LIPIcs.ESA.2020.34},
annote =	{Keywords: Consistent Digital Line Segments, Digital Geometry, Discrepancy}
}
Document
Track A: Algorithms, Complexity and Games
##### Computational Complexity of the α-Ham-Sandwich Problem

Authors: Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

##### Abstract
The classic Ham-Sandwich theorem states that for any d measurable sets in ℝ^d, there is a hyperplane that bisects them simultaneously. An extension by Bárány, Hubard, and Jerónimo [DCG 2008] states that if the sets are convex and well-separated, then for any given α₁, … , α_d ∈ [0, 1], there is a unique oriented hyperplane that cuts off a respective fraction α₁, … , α_d from each set. Steiger and Zhao [DCG 2010] proved a discrete analogue of this theorem, which we call the α-Ham-Sandwich theorem. They gave an algorithm to find the hyperplane in time O(n (log n)^{d-3}), where n is the total number of input points. The computational complexity of this search problem in high dimensions is open, quite unlike the complexity of the Ham-Sandwich problem, which is now known to be PPA-complete (Filos-Ratsikas and Goldberg [STOC 2019]). Recently, Fearnley, Gordon, Mehta, and Savani [ICALP 2019] introduced a new sub-class of CLS (Continuous Local Search) called Unique End-of-Potential Line (UEOPL). This class captures problems in CLS that have unique solutions. We show that for the α-Ham-Sandwich theorem, the search problem of finding the dividing hyperplane lies in UEOPL. This gives the first non-trivial containment of the problem in a complexity class and places it in the company of classic search problems such as finding the fixed point of a contraction map, the unique sink orientation problem and the P-matrix linear complementarity problem.

##### Cite as

Man-Kwun Chiu, Aruni Choudhary, and Wolfgang Mulzer. Computational Complexity of the α-Ham-Sandwich Problem. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 31:1-31:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

@InProceedings{chiu_et_al:LIPIcs.ICALP.2020.31,
author =	{Chiu, Man-Kwun and Choudhary, Aruni and Mulzer, Wolfgang},
title =	{{Computational Complexity of the \alpha-Ham-Sandwich Problem}},
booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
pages =	{31:1--31:18},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-138-2},
ISSN =	{1868-8969},
year =	{2020},
volume =	{168},
editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.31},
URN =		{urn:nbn:de:0030-drops-124382},
doi =		{10.4230/LIPIcs.ICALP.2020.31},
annote =	{Keywords: Ham-Sandwich Theorem, Computational Complexity, Continuous Local Search}
}
Document
Track A: Algorithms, Complexity and Games
##### Kinetic Geodesic Voronoi Diagrams in a Simple Polygon

Authors: Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)

##### Abstract
We study the geodesic Voronoi diagram of a set S of n linearly moving sites inside a static simple polygon P with m vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then develop a kinetic data structure (KDS) that maintains the geodesic Voronoi diagram as the sites move. To this end, we first analyze how often a single bisector, defined by two sites, or a single Voronoi center, defined by three sites, can change. For both these structures we prove that the number of such changes is at most O(m³), and that this is tight in the worst case. Moreover, we develop compact, responsive, local, and efficient kinetic data structures for both structures. Our data structures use linear space and process a worst-case optimal number of events. Our bisector KDS handles each event in O(log m) time, and our Voronoi center handles each event in O(log² m) time. Both structures can be extended to efficiently support updating the movement of the sites as well. Using these data structures as building blocks we obtain a compact KDS for maintaining the full geodesic Voronoi diagram.

##### Cite as

Matias Korman, André van Renssen, Marcel Roeloffzen, and Frank Staals. Kinetic Geodesic Voronoi Diagrams in a Simple Polygon. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 75:1-75:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

@InProceedings{korman_et_al:LIPIcs.ICALP.2020.75,
author =	{Korman, Matias and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Staals, Frank},
title =	{{Kinetic Geodesic Voronoi Diagrams in a Simple Polygon}},
booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
pages =	{75:1--75:17},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-138-2},
ISSN =	{1868-8969},
year =	{2020},
volume =	{168},
editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.75},
URN =		{urn:nbn:de:0030-drops-124820},
doi =		{10.4230/LIPIcs.ICALP.2020.75},
annote =	{Keywords: kinetic data structure, simple polygon, geodesic voronoi diagram}
}
Document
##### A Generalization of Self-Improving Algorithms

Authors: Siu-Wing Cheng, Man-Kwun Chiu, Kai Jin, and Man Ting Wong

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)

##### Abstract
Ailon et al. [SICOMP'11] proposed self-improving algorithms for sorting and Delaunay triangulation (DT) when the input instances x₁,⋯,x_n follow some unknown product distribution. That is, x_i comes from a fixed unknown distribution 𝒟_i, and the x_i’s are drawn independently. After spending O(n^{1+ε}) time in a learning phase, the subsequent expected running time is O((n+ H)/ε), where H ∈ {H_S,H_DT}, and H_S and H_DT are the entropies of the distributions of the sorting and DT output, respectively. In this paper, we allow dependence among the x_i’s under the group product distribution. There is a hidden partition of [1,n] into groups; the x_i’s in the k-th group are fixed unknown functions of the same hidden variable u_k; and the u_k’s are drawn from an unknown product distribution. We describe self-improving algorithms for sorting and DT under this model when the functions that map u_k to x_i’s are well-behaved. After an O(poly(n))-time training phase, we achieve O(n + H_S) and O(nα(n) + H_DT) expected running times for sorting and DT, respectively, where α(⋅) is the inverse Ackermann function.

##### Cite as

Siu-Wing Cheng, Man-Kwun Chiu, Kai Jin, and Man Ting Wong. A Generalization of Self-Improving Algorithms. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 29:1-29:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)

@InProceedings{cheng_et_al:LIPIcs.SoCG.2020.29,
author =	{Cheng, Siu-Wing and Chiu, Man-Kwun and Jin, Kai and Wong, Man Ting},
title =	{{A Generalization of Self-Improving Algorithms}},
booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
pages =	{29:1--29:13},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-143-6},
ISSN =	{1868-8969},
year =	{2020},
volume =	{164},
editor =	{Cabello, Sergio and Chen, Danny Z.},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.29},
URN =		{urn:nbn:de:0030-drops-121873},
doi =		{10.4230/LIPIcs.SoCG.2020.29},
annote =	{Keywords: expected running time, entropy, sorting, Delaunay triangulation}
}
Document

Authors: Elena Arseneva, Man-Kwun Chiu, Matias Korman, Aleksandar Markovic, Yoshio Okamoto, Aurélien Ooms, André van Renssen, and Marcel Roeloffzen

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)

##### Abstract
We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of n vertices and h holes. We introduce a graph of oriented distances to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in O(min(n^omega, n^2 + nh log h + chi^2)) time, where omega<2.373 denotes the matrix multiplication exponent and chi in Omega(n) cap O(n^2) is the number of edges of the graph of oriented distances. We also provide an alternative algorithm for computing the diameter that runs in O(n^2 log n) time.

##### Cite as

Elena Arseneva, Man-Kwun Chiu, Matias Korman, Aleksandar Markovic, Yoshio Okamoto, Aurélien Ooms, André van Renssen, and Marcel Roeloffzen. Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 58:1-58:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

@InProceedings{arseneva_et_al:LIPIcs.ISAAC.2018.58,
author =	{Arseneva, Elena and Chiu, Man-Kwun and Korman, Matias and Markovic, Aleksandar and Okamoto, Yoshio and Ooms, Aur\'{e}lien and van Renssen, Andr\'{e} and Roeloffzen, Marcel},
title =	{{Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain}},
booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
pages =	{58:1--58:13},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-094-1},
ISSN =	{1868-8969},
year =	{2018},
volume =	{123},
editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.58},
URN =		{urn:nbn:de:0030-drops-100060},
doi =		{10.4230/LIPIcs.ISAAC.2018.58},
}
Document
##### Routing in Polygonal Domains

Authors: Bahareh Banyassady, Man-Kwun Chiu, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein, Birgit Vogtenhuber, and Max Willert

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)

##### Abstract
We consider the problem of routing a data packet through the visibility graph of a polygonal domain P with n vertices and h holes. We may preprocess P to obtain a label and a routing table for each vertex. Then, we must be able to route a data packet between any two vertices p and q of P , where each step must use only the label of the target node q and the routing table of the current node. For any fixed eps > 0, we pre ent a routing scheme that always achieves a routing path that exceeds the shortest path by a factor of at most 1 + eps. The labels have O(log n) bits, and the routing tables are of size O((eps^{-1} + h) log n). The preprocessing time is O(n^2 log n + hn^2 + eps^{-1}hn). It can be improved to O(n 2 + eps^{-1}n) for simple polygons.

##### Cite as

Bahareh Banyassady, Man-Kwun Chiu, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, Yannik Stein, Birgit Vogtenhuber, and Max Willert. Routing in Polygonal Domains. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 10:1-10:13, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

@InProceedings{banyassady_et_al:LIPIcs.ISAAC.2017.10,
author =	{Banyassady, Bahareh and Chiu, Man-Kwun and Korman, Matias and Mulzer, Wolfgang and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Seiferth, Paul and Stein, Yannik and Vogtenhuber, Birgit and Willert, Max},
title =	{{Routing in Polygonal Domains}},
booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
pages =	{10:1--10:13},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-054-5},
ISSN =	{1868-8969},
year =	{2017},
volume =	{92},
editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.10},
URN =		{urn:nbn:de:0030-drops-82379},
doi =		{10.4230/LIPIcs.ISAAC.2017.10},
annote =	{Keywords: polygonal domains, routing scheme, small stretch,Yao graph}
}
Document
##### High Dimensional Consistent Digital Segments

Authors: Man-Kwun Chiu and Matias Korman

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)

##### Abstract
We consider the problem of digitalizing Euclidean line segments from R^d to Z^d. Christ {et al.} (DCG, 2012) showed how to construct a set of {consistent digital segments} (CDS) for d=2: a collection of segments connecting any two points in Z^2 that satisfies the natural extension of the Euclidean axioms to Z^d. In this paper we study the construction of CDSs in higher dimensions. We show that any total order can be used to create a set of {consistent digital rays} CDR in Z^d (a set of rays emanating from a fixed point p that satisfies the extension of the Euclidean axioms). We fully characterize for which total orders the construction holds and study their Hausdorff distance, which in particular positively answers the question posed by Christ {et al.}.

##### Cite as

Man-Kwun Chiu and Matias Korman. High Dimensional Consistent Digital Segments. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 31:1-31:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

@InProceedings{chiu_et_al:LIPIcs.SoCG.2017.31,
author =	{Chiu, Man-Kwun and Korman, Matias},
title =	{{High Dimensional Consistent Digital Segments}},
booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
pages =	{31:1--31:15},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-038-5},
ISSN =	{1868-8969},
year =	{2017},
volume =	{77},
editor =	{Aronov, Boris and Katz, Matthew J.},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.31},
URN =		{urn:nbn:de:0030-drops-71900},
doi =		{10.4230/LIPIcs.SoCG.2017.31},
annote =	{Keywords: Consistent Digital Line Segments, Digital Geometry, Computer Vision}
}
Document
##### Hanabi is NP-complete, Even for Cheaters who Look at Their Cards

Authors: Jean-Francois Baffier, Man-Kwun Chiu, Yago Diez, Matias Korman, Valia Mitsou, André van Renssen, Marcel Roeloffzen, and Yushi Uno

Published in: LIPIcs, Volume 49, 8th International Conference on Fun with Algorithms (FUN 2016)

##### Abstract
This paper studies a cooperative card game called Hanabi from an algorithmic combinatorial game theory viewpoint. The aim of the game is to play cards from 1 to n in increasing order (this has to be done independently in c different colors). Cards are drawn from a deck one by one. Drawn cards are either immediately played, discarded or stored for future use (overall each player can store up to h cards). The main feature of the game is that players know the cards their partners hold (but not theirs. This information must be shared through hints). We introduce a simplified mathematical model of a single-player version of the game, and show several complexity results: the game is intractable in a general setting even if we forego with the hidden information aspect of the game. On the positive side, the game can be solved in linear time for some interesting restricted cases (i.e., for small values of h and c).

##### Cite as

Jean-Francois Baffier, Man-Kwun Chiu, Yago Diez, Matias Korman, Valia Mitsou, André van Renssen, Marcel Roeloffzen, and Yushi Uno. Hanabi is NP-complete, Even for Cheaters who Look at Their Cards. In 8th International Conference on Fun with Algorithms (FUN 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 49, pp. 4:1-4:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

@InProceedings{baffier_et_al:LIPIcs.FUN.2016.4,
author =	{Baffier, Jean-Francois and Chiu, Man-Kwun and Diez, Yago and Korman, Matias and Mitsou, Valia and van Renssen, Andr\'{e} and Roeloffzen, Marcel and Uno, Yushi},
title =	{{Hanabi is NP-complete, Even for Cheaters who Look at Their Cards}},
booktitle =	{8th International Conference on Fun with Algorithms (FUN 2016)},
pages =	{4:1--4:17},
series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN =	{978-3-95977-005-7},
ISSN =	{1868-8969},
year =	{2016},
volume =	{49},
editor =	{Demaine, Erik D. and Grandoni, Fabrizio},
publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2016.4},
URN =		{urn:nbn:de:0030-drops-58644},
doi =		{10.4230/LIPIcs.FUN.2016.4},
annote =	{Keywords: algorithmic combinatorial game theory, sorting}
}
• Refine by Author
• 8 Chiu, Man-Kwun
• 6 Korman, Matias
• 4 Roeloffzen, Marcel
• 4 van Renssen, André
• 2 Mulzer, Wolfgang

• Refine by Classification
• 5 Theory of computation → Computational geometry
• 1 Human-centered computing → Graph drawings
• 1 Mathematics of computing → Combinatorics
• 1 Mathematics of computing → Graph theory
• 1 Theory of computation → Complexity classes

• Refine by Keyword
• 2 Consistent Digital Line Segments
• 2 Digital Geometry
• 2 sorting
• 1 Computational Complexity
• 1 Computer Vision

• Refine by Type
• 9 document

• Refine by Publication Year
• 4 2020
• 2 2017
• 1 2016
• 1 2018
• 1 2023

X

Feedback for Dagstuhl Publishing