11 Search Results for "Cooper, Martin C."


Document
The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension

Authors: Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
It is celebrated that a simple random walk on ℤ and ℤ² returns to the initial vertex v infinitely many times during infinitely many transitions, which is said recurrent, while it returns to v only finite times on ℤ^d for d ≥ 3, which is said transient. It is also known that a simple random walk on a growing region on ℤ^d can be recurrent depending on growing speed for any fixed d. This paper shows that a simple random walk on {0,1,…,N}ⁿ with an increasing n and a fixed N can be recurrent depending on the increasing speed of n. Precisely, we are concerned with a specific model of a random walk on a growing graph (RWoGG) and show a phase transition between the recurrence and transience of the random walk regarding the growth speed of the graph. For the proof, we develop a pausing coupling argument introducing the notion of weakly less homesick as graph growing (weakly LHaGG).

Cite as

Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai. The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kumamoto_et_al:LIPIcs.AofA.2024.22,
  author =	{Kumamoto, Shuma and Kijima, Shuji and Shirai, Tomoyuki},
  title =	{{The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.22},
  URN =		{urn:nbn:de:0030-drops-204577},
  doi =		{10.4230/LIPIcs.AofA.2024.22},
  annote =	{Keywords: Random walk, dynamic graph, recurrence, transience, coupling}
}
Document
Barcode Selection and Layout Optimization in Spatial Transcriptomics

Authors: Frederik L. Jatzkowski, Antonia Schmidt, Robert Mank, Steffen Schüler, and Matthias Müller-Hannemann

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
An important special case of the quadratic assignment problem arises in the synthesis of DNA microarrays for high-resolution spatial transcriptomics. The task is to select a suitable subset from a set of barcodes, i. e. short DNA strings that serve as unique identifiers, and to assign the selected barcodes to positions on a two-dimensional array in such a way that a position-dependent cost function is minimized. A typical microarray with dimensions of 768×1024 requires 786,432 many barcodes to be placed, leading to very challenging large-scale combinatorial optimization problems. The general quadratic assignment problem is well-known for its hardness, both in theory and in practice. It turns out that this also holds for the special case of the barcode layout problem. We show that the problem is even hard to approximate: It is MaxSNP-hard. An ILP formulation theoretically allows the computation of optimal results, but it is only applicable for tiny instances. Therefore, we have developed layout constructing and improving heuristics with the aim of computing near-optimal solutions for instances of realistic size. These include a sorting-based algorithm, a greedy algorithm, 2-OPT-based local search and a genetic algorithm. To assess the quality of the results, we compare the generated solutions with the expected cost of a random layout and with lower bounds. A combination of the greedy algorithm and 2-OPT local search produces the most promising results in terms of both quality and runtime. Solutions to large-scale instances with arrays of dimension 768×1024 show a 37% reduction in cost over a random solution and can be computed in about 3 minutes. Since the universe of suitable barcodes is much larger than the number of barcodes needed, this can be exploited. Experiments with different surpluses of barcodes show that a significant improvement in layout quality can be achieved at the cost of a reasonable increase in runtime. Another interesting finding is that the restriction of the barcode design space by biochemical constraints is actually beneficial for the overall layout cost.

Cite as

Frederik L. Jatzkowski, Antonia Schmidt, Robert Mank, Steffen Schüler, and Matthias Müller-Hannemann. Barcode Selection and Layout Optimization in Spatial Transcriptomics. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jatzkowski_et_al:LIPIcs.SEA.2024.17,
  author =	{Jatzkowski, Frederik L. and Schmidt, Antonia and Mank, Robert and Sch\"{u}ler, Steffen and M\"{u}ller-Hannemann, Matthias},
  title =	{{Barcode Selection and Layout Optimization in Spatial Transcriptomics}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.17},
  URN =		{urn:nbn:de:0030-drops-203821},
  doi =		{10.4230/LIPIcs.SEA.2024.17},
  annote =	{Keywords: Spatial Transcriptomics, Array Layout, Optimization, Computational Complexity, GPU Computing, Integer Linear Programming, Metaheuristics}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Integer Linear-Exponential Programming in NP by Quantifier Elimination

Authors: Dmitry Chistikov, Alessio Mansutti, and Mikhail R. Starchak

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
This paper provides an NP procedure that decides whether a linear-exponential system of constraints has an integer solution. Linear-exponential systems extend standard integer linear programs with exponential terms 2^x and remainder terms (x mod 2^y). Our result implies that the existential theory of the structure (ℕ,0,1,+,2^(⋅),V_2(⋅,⋅), ≤) has an NP-complete satisfiability problem, thus improving upon a recent EXPSPACE upper bound. This theory extends the existential fragment of Presburger arithmetic with the exponentiation function x ↦ 2^x and the binary predicate V_2(x,y) that is true whenever y ≥ 1 is the largest power of 2 dividing x. Our procedure for solving linear-exponential systems uses the method of quantifier elimination. As a by-product, we modify the classical Gaussian variable elimination into a non-deterministic polynomial-time procedure for integer linear programming (or: existential Presburger arithmetic).

Cite as

Dmitry Chistikov, Alessio Mansutti, and Mikhail R. Starchak. Integer Linear-Exponential Programming in NP by Quantifier Elimination. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 132:1-132:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.ICALP.2024.132,
  author =	{Chistikov, Dmitry and Mansutti, Alessio and Starchak, Mikhail R.},
  title =	{{Integer Linear-Exponential Programming in NP by Quantifier Elimination}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{132:1--132:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.132},
  URN =		{urn:nbn:de:0030-drops-202758},
  doi =		{10.4230/LIPIcs.ICALP.2024.132},
  annote =	{Keywords: decision procedures, integer programming, quantifier elimination}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
An Efficient Quantifier Elimination Procedure for Presburger Arithmetic

Authors: Christoph Haase, Shankara Narayanan Krishna, Khushraj Madnani, Om Swostik Mishra, and Georg Zetzsche

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
All known quantifier elimination procedures for Presburger arithmetic require doubly exponential time for eliminating a single block of existentially quantified variables. It has even been claimed in the literature that this upper bound is tight. We observe that this claim is incorrect and develop, as the main result of this paper, a quantifier elimination procedure eliminating a block of existentially quantified variables in singly exponential time. As corollaries, we can establish the precise complexity of numerous problems. Examples include deciding (i) monadic decomposability for existential formulas, (ii) whether an existential formula defines a well-quasi ordering or, more generally, (iii) certain formulas of Presburger arithmetic with Ramsey quantifiers. Moreover, despite the exponential blowup, our procedure shows that under mild assumptions, even NP upper bounds for decision problems about quantifier-free formulas can be transferred to existential formulas. The technical basis of our results is a kind of small model property for parametric integer programming that generalizes the seminal results by von zur Gathen and Sieveking on small integer points in convex polytopes.

Cite as

Christoph Haase, Shankara Narayanan Krishna, Khushraj Madnani, Om Swostik Mishra, and Georg Zetzsche. An Efficient Quantifier Elimination Procedure for Presburger Arithmetic. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 142:1-142:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{haase_et_al:LIPIcs.ICALP.2024.142,
  author =	{Haase, Christoph and Krishna, Shankara Narayanan and Madnani, Khushraj and Mishra, Om Swostik and Zetzsche, Georg},
  title =	{{An Efficient Quantifier Elimination Procedure for Presburger Arithmetic}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{142:1--142:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.142},
  URN =		{urn:nbn:de:0030-drops-202856},
  doi =		{10.4230/LIPIcs.ICALP.2024.142},
  annote =	{Keywords: Presburger arithmetic, quantifier elimination, parametric integer programming, convex geometry}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Complexity of Minimum-Size Arc-Inconsistency Explanations

Authors: Christian Bessiere, Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard

Published in: LIPIcs, Volume 235, 28th International Conference on Principles and Practice of Constraint Programming (CP 2022)


Abstract
Explaining the outcome of programs has become one of the main concerns in AI research. In constraint programming, a user may want the system to explain why a given variable assignment is not feasible or how it came to the conclusion that the problem does not have any solution. One solution to the latter is to return to the user a sequence of simple reasoning steps that lead to inconsistency. Arc consistency is a well-known form of reasoning that can be understood by a human. We consider explanations as sequences of propagation steps of a constraint on a variable (i.e. the ubiquitous revise function in arc consistency algorithms) that lead to inconsistency. We characterize, on binary CSPs, cases for which providing a shortest such explanation is easy: when domains are Boolean or when variables have maximum degree two. However, these polynomial cases are tight. Providing a shortest explanation is NP-hard if the maximum degree is three, even if the number of variables is bounded, or if domain size is bounded by three. It remains NP-hard on trees, despite the fact that arc consistency is a decision procedure on trees. Finally, the problem is not FPT-approximable unless the Gap-ETH is false.

Cite as

Christian Bessiere, Clément Carbonnel, Martin C. Cooper, and Emmanuel Hebrard. Complexity of Minimum-Size Arc-Inconsistency Explanations. In 28th International Conference on Principles and Practice of Constraint Programming (CP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 235, pp. 9:1-9:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bessiere_et_al:LIPIcs.CP.2022.9,
  author =	{Bessiere, Christian and Carbonnel, Cl\'{e}ment and Cooper, Martin C. and Hebrard, Emmanuel},
  title =	{{Complexity of Minimum-Size Arc-Inconsistency Explanations}},
  booktitle =	{28th International Conference on Principles and Practice of Constraint Programming (CP 2022)},
  pages =	{9:1--9:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-240-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{235},
  editor =	{Solnon, Christine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.9},
  URN =		{urn:nbn:de:0030-drops-166380},
  doi =		{10.4230/LIPIcs.CP.2022.9},
  annote =	{Keywords: Constraint programming, constraint propagation, minimum explanations, complexity}
}
Document
Isomorphisms Between STRIPS Problems and Sub-Problems

Authors: Martin C. Cooper, Arnaud Lequen, and Frédéric Maris

Published in: LIPIcs, Volume 235, 28th International Conference on Principles and Practice of Constraint Programming (CP 2022)


Abstract
Determining whether two STRIPS planning instances are isomorphic is the simplest form of comparison between planning instances. It is also a particular case of the problem concerned with finding an isomorphism between a planning instance P and a sub-instance of another instance P'. One application of such an isomorphism is to efficiently produce a compiled form containing all solutions to P from a compiled form containing all solutions to P'. In this paper, we study the complexity of both problems. We show that the former is GI-complete, and can thus be solved, in theory, in quasi-polynomial time. While we prove the latter to be NP-complete, we propose an algorithm to build an isomorphism, when possible. We report extensive experimental trials on benchmark problems which demonstrate conclusively that applying constraint propagation in preprocessing can greatly improve the efficiency of a SAT solver.

Cite as

Martin C. Cooper, Arnaud Lequen, and Frédéric Maris. Isomorphisms Between STRIPS Problems and Sub-Problems. In 28th International Conference on Principles and Practice of Constraint Programming (CP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 235, pp. 13:1-13:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cooper_et_al:LIPIcs.CP.2022.13,
  author =	{Cooper, Martin C. and Lequen, Arnaud and Maris, Fr\'{e}d\'{e}ric},
  title =	{{Isomorphisms Between STRIPS Problems and Sub-Problems}},
  booktitle =	{28th International Conference on Principles and Practice of Constraint Programming (CP 2022)},
  pages =	{13:1--13:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-240-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{235},
  editor =	{Solnon, Christine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.13},
  URN =		{urn:nbn:de:0030-drops-166426},
  doi =		{10.4230/LIPIcs.CP.2022.13},
  annote =	{Keywords: planning, isomorphism, complexity, constraint propagation}
}
Document
On the Tractability of Explaining Decisions of Classifiers

Authors: Martin C. Cooper and João Marques-Silva

Published in: LIPIcs, Volume 210, 27th International Conference on Principles and Practice of Constraint Programming (CP 2021)


Abstract
Explaining decisions is at the heart of explainable AI. We investigate the computational complexity of providing a formally-correct and minimal explanation of a decision taken by a classifier. In the case of threshold (i.e. score-based) classifiers, we show that a complexity dichotomy follows from the complexity dichotomy for languages of cost functions. In particular, submodular classifiers allow tractable explanation of positive decisions, but not negative decisions (assuming P≠NP). This is an example of the possible asymmetry between the complexity of explaining positive and negative decisions of a particular classifier. Nevertheless, there are large families of classifiers for which explaining both positive and negative decisions is tractable, such as monotone or linear classifiers. We extend tractable cases to constrained classifiers (when there are constraints on the possible input vectors) and to the search for contrastive rather than abductive explanations. Indeed, we show that tractable classes coincide for abductive and contrastive explanations in the constrained or unconstrained settings.

Cite as

Martin C. Cooper and João Marques-Silva. On the Tractability of Explaining Decisions of Classifiers. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 210, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cooper_et_al:LIPIcs.CP.2021.21,
  author =	{Cooper, Martin C. and Marques-Silva, Jo\~{a}o},
  title =	{{On the Tractability of Explaining Decisions of Classifiers}},
  booktitle =	{27th International Conference on Principles and Practice of Constraint Programming (CP 2021)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-211-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{210},
  editor =	{Michel, Laurent D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2021.21},
  URN =		{urn:nbn:de:0030-drops-153125},
  doi =		{10.4230/LIPIcs.CP.2021.21},
  annote =	{Keywords: machine learning, tractability, explanations, weighted constraint satisfaction}
}
Document
Tutorial
Graphical Models: Queries, Complexity, Algorithms (Tutorial)

Authors: Martin C. Cooper, Simon de Givry, and Thomas Schiex

Published in: LIPIcs, Volume 154, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)


Abstract
Graphical models (GMs) define a family of mathematical models aimed at the concise description of multivariate functions using decomposability. We restrict ourselves to functions of discrete variables but try to cover a variety of models that are not always considered as "Graphical Models", ranging from functions with Boolean variables and Boolean co-domain (used in automated reasoning) to functions over finite domain variables and integer or real co-domains (usual in machine learning and statistics). We use a simple algebraic semi-ring based framework for generality, define associated queries, relationships between graphical models, complexity results, and families of algorithms, with their associated guarantees.

Cite as

Martin C. Cooper, Simon de Givry, and Thomas Schiex. Graphical Models: Queries, Complexity, Algorithms (Tutorial). In 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 154, pp. 4:1-4:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cooper_et_al:LIPIcs.STACS.2020.4,
  author =	{Cooper, Martin C. and de Givry, Simon and Schiex, Thomas},
  title =	{{Graphical Models: Queries, Complexity, Algorithms}},
  booktitle =	{37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-140-5},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{154},
  editor =	{Paul, Christophe and Bl\"{a}ser, Markus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2020.4},
  URN =		{urn:nbn:de:0030-drops-118654},
  doi =		{10.4230/LIPIcs.STACS.2020.4},
  annote =	{Keywords: Computational complexity, tree decomposition, graphical models, submodularity, message passing, local consistency, artificial intelligence, valued constraints, optimization}
}
Document
On Singleton Arc Consistency for CSPs Defined by Monotone Patterns

Authors: Clément Carbonnel, David A. Cohen, Martin C. Cooper, and Stanislav Zivny

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
Singleton arc consistency is an important type of local consistency which has been recently shown to solve all constraint satisfaction problems (CSPs) over constraint languages of bounded width. We aim to characterise all classes of CSPs defined by a forbidden pattern that are solved by singleton arc consistency and closed under removing constraints. We identify five new patterns whose absence ensures solvability by singleton arc consistency, four of which are provably maximal and three of which generalise 2-SAT. Combined with simple counter-examples for other patterns, we make significant progress towards a complete classification.

Cite as

Clément Carbonnel, David A. Cohen, Martin C. Cooper, and Stanislav Zivny. On Singleton Arc Consistency for CSPs Defined by Monotone Patterns. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 19:1-19:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{carbonnel_et_al:LIPIcs.STACS.2018.19,
  author =	{Carbonnel, Cl\'{e}ment and Cohen, David A. and Cooper, Martin C. and Zivny, Stanislav},
  title =	{{On Singleton Arc Consistency for CSPs Defined by Monotone Patterns}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{19:1--19:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.19},
  URN =		{urn:nbn:de:0030-drops-84876},
  doi =		{10.4230/LIPIcs.STACS.2018.19},
  annote =	{Keywords: constraint satisfaction problems, forbidden patterns, singleton arc consistency}
}
Document
Hybrid Tractable Classes of Constraint Problems

Authors: Martin C. Cooper and Stanislav Zivny

Published in: Dagstuhl Follow-Ups, Volume 7, The Constraint Satisfaction Problem: Complexity and Approximability (2017)


Abstract
We present a survey of complexity results for hybrid constraint satisfaction problems (CSPs) and valued constraint satisfaction problems (VCSPs). These are classes of (V)CSPs defined by restrictions that are not exclusively language-based or structure-based.

Cite as

Martin C. Cooper and Stanislav Zivny. Hybrid Tractable Classes of Constraint Problems. In The Constraint Satisfaction Problem: Complexity and Approximability. Dagstuhl Follow-Ups, Volume 7, pp. 113-135, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InCollection{cooper_et_al:DFU.Vol7.15301.113,
  author =	{Cooper, Martin C. and Zivny, Stanislav},
  title =	{{Hybrid Tractable Classes of Constraint Problems}},
  booktitle =	{The Constraint Satisfaction Problem: Complexity and Approximability},
  pages =	{113--135},
  series =	{Dagstuhl Follow-Ups},
  ISBN =	{978-3-95977-003-3},
  ISSN =	{1868-8977},
  year =	{2017},
  volume =	{7},
  editor =	{Krokhin, Andrei and Zivny, Stanislav},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DFU.Vol7.15301.113},
  URN =		{urn:nbn:de:0030-drops-69616},
  doi =		{10.4230/DFU.Vol7.15301.113},
  annote =	{Keywords: Constraint satisfaction problems, Optimisation, Tractability}
}
  • Refine by Author
  • 6 Cooper, Martin C.
  • 2 Carbonnel, Clément
  • 2 Zivny, Stanislav
  • 1 Bessiere, Christian
  • 1 Bonte, Pieter
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Logic
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Applied computing → Operations research
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Planning for deterministic actions
  • Show More...

  • Refine by Keyword
  • 2 complexity
  • 2 constraint propagation
  • 2 quantifier elimination
  • 1 Array Layout
  • 1 Computational Complexity
  • Show More...

  • Refine by Type
  • 11 document

  • Refine by Publication Year
  • 5 2024
  • 2 2022
  • 1 2017
  • 1 2018
  • 1 2020
  • Show More...