9 Search Results for "Ernst, Michael D."


Document
Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs

Authors: Srinidhi Srinivasan, Geoffrey Nelissen, Reinder J. Bril, and Nirvana Meratnia

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
IEEE Time-Sensitive Networking (TSN) is one of the main solutions considered by the industry to support time-sensitive communication in data-intensive safety-critical and mission-critical applications such as autonomous driving and smart manufacturing. IEEE TSN standardizes several mechanisms to support real-time traffic on Ethernet networks. Time-Aware Shapers (TAS) (IEEE 802.1Qbv) is the standardized mechanisms of TSN that is usually considered to provide the most deterministic behavior for packet forwarding. TAS regulates when traffic classes may forward incoming packets to the egress of a TSN switch using gates that are opened and closed according to a time-triggered schedule. State-of-the-art solutions to configure or analyze TAS do not allow for multiple traffic classes to have their TAS gates opened at the same time according to any arbitrary schedule. In this paper, we present the first response-time analysis for traffic shaped with TAS where no restriction is enforced on the gate schedule. The proposed analysis is exact. It is a non-trivial variant of the schedule abstraction graph analysis framework [Nasri and Brandenburg, 2017]. Experiments confirm the usefulness of the proposed analysis and show that it is promising for doing design-space exploration where non-conventional TAS gates configurations are investigated to, for instance, improve average-case performance without degrading the worst-case.

Cite as

Srinidhi Srinivasan, Geoffrey Nelissen, Reinder J. Bril, and Nirvana Meratnia. Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 16:1-16:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{srinivasan_et_al:LIPIcs.ECRTS.2024.16,
  author =	{Srinivasan, Srinidhi and Nelissen, Geoffrey and Bril, Reinder J. and Meratnia, Nirvana},
  title =	{{Analysis of TSN Time-Aware Shapers Using Schedule Abstraction Graphs}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{16:1--16:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.16},
  URN =		{urn:nbn:de:0030-drops-203198},
  doi =		{10.4230/LIPIcs.ECRTS.2024.16},
  annote =	{Keywords: TSN, Time-Aware Shapers, TAS, SAG, Schedule Abstraction, latency}
}
Document
Track A: Algorithms, Complexity and Games
It’s Hard to HAC Average Linkage!

Authors: MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied method for hierarchical clustering. Recent applications to massive datasets have driven significant interest in near-linear-time and efficient parallel algorithms for average linkage HAC. We provide hardness results that rule out such algorithms. On the sequential side, we establish a runtime lower bound of n^{3/2-ε} on n node graphs for sequential combinatorial algorithms under standard fine-grained complexity assumptions. This essentially matches the best-known running time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy is small.

Cite as

MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki. It’s Hard to HAC Average Linkage!. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bateni_et_al:LIPIcs.ICALP.2024.18,
  author =	{Bateni, MohammadHossein and Dhulipala, Laxman and Gowda, Kishen N. and Hershkowitz, D. Ellis and Jayaram, Rajesh and {\L}\k{a}cki, Jakub},
  title =	{{It’s Hard to HAC Average Linkage!}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.18},
  URN =		{urn:nbn:de:0030-drops-201613},
  doi =		{10.4230/LIPIcs.ICALP.2024.18},
  annote =	{Keywords: Clustering, Hierarchical Graph Clustering, HAC, Fine-Grained Complexity, Parallel Algorithms, CC}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Improved Algorithm for Reachability in d-VASS

Authors: Yuxi Fu, Qizhe Yang, and Yangluo Zheng

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An 𝖥_{d} upper bound for the reachability problem in vector addition systems with states (VASS) in fixed dimension is given, where 𝖥_d is the d-th level of the Grzegorczyk hierarchy of complexity classes. The new algorithm combines the idea of the linear path scheme characterization of the reachability in the 2-dimension VASSes with the general decomposition algorithm by Mayr, Kosaraju and Lambert. The result improves the 𝖥_{d + 4} upper bound due to Leroux and Schmitz (LICS 2019).

Cite as

Yuxi Fu, Qizhe Yang, and Yangluo Zheng. Improved Algorithm for Reachability in d-VASS. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 136:1-136:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.ICALP.2024.136,
  author =	{Fu, Yuxi and Yang, Qizhe and Zheng, Yangluo},
  title =	{{Improved Algorithm for Reachability in d-VASS}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{136:1--136:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.136},
  URN =		{urn:nbn:de:0030-drops-202799},
  doi =		{10.4230/LIPIcs.ICALP.2024.136},
  annote =	{Keywords: Petri net, vector addition system, reachability}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On the Length of Strongly Monotone Descending Chains over ℕ^d

Authors: Sylvain Schmitz and Lia Schütze

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A recent breakthrough by Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and Węgrzycki (ICALP 2023) bounds the running time for the coverability problem in d-dimensional vector addition systems under unary encoding to n^{2^{O(d)}}, improving on Rackoff’s n^{2^{O(dlg d)}} upper bound (Theor. Comput. Sci. 1978), and provides conditional matching lower bounds. In this paper, we revisit Lazić and Schmitz' "ideal view" of the backward coverability algorithm (Inform. Comput. 2021) in the light of this breakthrough. We show that the controlled strongly monotone descending chains of downwards-closed sets over ℕ^d that arise from the dual backward coverability algorithm of Lazić and Schmitz on d-dimensional unary vector addition systems also enjoy this tight n^{2^{O(d)}} upper bound on their length, and that this also translates into the same bound on the running time of the backward coverability algorithm. Furthermore, our analysis takes place in a more general setting than that of Lazić and Schmitz, which allows to show the same results and improve on the 2EXPSPACE upper bound derived by Benedikt, Duff, Sharad, and Worrell (LICS 2017) for the coverability problem in invertible affine nets.

Cite as

Sylvain Schmitz and Lia Schütze. On the Length of Strongly Monotone Descending Chains over ℕ^d. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 153:1-153:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schmitz_et_al:LIPIcs.ICALP.2024.153,
  author =	{Schmitz, Sylvain and Sch\"{u}tze, Lia},
  title =	{{On the Length of Strongly Monotone Descending Chains over \mathbb{N}^d}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{153:1--153:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.153},
  URN =		{urn:nbn:de:0030-drops-202964},
  doi =		{10.4230/LIPIcs.ICALP.2024.153},
  annote =	{Keywords: Vector addition system, coverability, well-quasi-order, order ideal, affine net}
}
Document
Artifact
Accumulation Analysis (Artifact)

Authors: Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

Published in: DARTS, Volume 8, Issue 2, Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
This artifact contains the data and analysis supporting the literature survey in section 4 of [Kellogg et al., 2022]. In our literature survey, we examined 187 papers from the literature that mention "typestate" and analyzed the typestate specifications they contained to determine whether or not they are accumulation typestate specifications. Our purpose in doing this literature survey was to determine whether typestate FSMs were accumulation or not. However, we believe that the collection of typestate automata in typestates.pdf might be useful to anyone interested in the sort of typestate automata that appear in the literature. If we had had access to such a collection (gathered for a different purpose), our classification of whether these typestate automata were accumulation would have been much simpler. Anyone interested in properties of typestate automata can re-use our work.

Cite as

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. Accumulation Analysis (Artifact). In Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 2, pp. 22:1-22:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kellogg_et_al:DARTS.8.2.22,
  author =	{Kellogg, Martin and Shadab, Narges and Sridharan, Manu and Ernst, Michael D.},
  title =	{{Accumulation Analysis (Artifact)}},
  pages =	{22:1--22:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Kellogg, Martin and Shadab, Narges and Sridharan, Manu and Ernst, Michael D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.8.2.22},
  URN =		{urn:nbn:de:0030-drops-162209},
  doi =		{10.4230/DARTS.8.2.22},
  annote =	{Keywords: Typestate, finite-state property}
}
Document
Accumulation Analysis

Authors: Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst

Published in: LIPIcs, Volume 222, 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
A typestate specification indicates which behaviors of an object are permitted in each of the object’s states. In the general case, soundly checking a typestate specification requires precise information about aliasing (i.e., an alias or pointer analysis), which is computationally expensive. This requirement has hindered the adoption of sound typestate analyses in practice. This paper identifies accumulation typestate specifications, which are the subset of typestate specifications that can be soundly checked without any information about aliasing. An accumulation typestate specification can be checked instead by an accumulation analysis: a simple, fast dataflow analysis that conservatively approximates the operations that have been performed on an object. This paper formalizes the notions of accumulation analysis and accumulation typestate specification. It proves that accumulation typestate specifications are exactly those typestate specifications that can be checked soundly without aliasing information. Further, 41% of the typestate specifications that appear in the research literature are accumulation typestate specifications.

Cite as

Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. Accumulation Analysis. In 36th European Conference on Object-Oriented Programming (ECOOP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 222, pp. 10:1-10:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kellogg_et_al:LIPIcs.ECOOP.2022.10,
  author =	{Kellogg, Martin and Shadab, Narges and Sridharan, Manu and Ernst, Michael D.},
  title =	{{Accumulation Analysis}},
  booktitle =	{36th European Conference on Object-Oriented Programming (ECOOP 2022)},
  pages =	{10:1--10:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-225-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{222},
  editor =	{Ali, Karim and Vitek, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2022.10},
  URN =		{urn:nbn:de:0030-drops-162381},
  doi =		{10.4230/LIPIcs.ECOOP.2022.10},
  annote =	{Keywords: Typestate, finite-state property}
}
Document
Natural Language is a Programming Language: Applying Natural Language Processing to Software Development

Authors: Michael D. Ernst

Published in: LIPIcs, Volume 71, 2nd Summit on Advances in Programming Languages (SNAPL 2017)


Abstract
A powerful, but limited, way to view software is as source code alone. Treating a program as a sequence of instructions enables it to be formalized and makes it amenable to mathematical techniques such as abstract interpretation and model checking. A program consists of much more than a sequence of instructions. Developers make use of test cases, documentation, variable names, program structure, the version control repository, and more. I argue that it is time to take the blinders off of software analysis tools: tools should use all these artifacts to deduce more powerful and useful information about the program. Researchers are beginning to make progress towards this vision. This paper gives, as examples, four results that find bugs and generate code by applying natural language processing techniques to software artifacts. The four techniques use as input error messages, variable names, procedure documentation, and user questions. They use four different NLP techniques: document similarity, word semantics, parse trees, and neural networks. The initial results suggest that this is a promising avenue for future work.

Cite as

Michael D. Ernst. Natural Language is a Programming Language: Applying Natural Language Processing to Software Development. In 2nd Summit on Advances in Programming Languages (SNAPL 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 71, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{ernst:LIPIcs.SNAPL.2017.4,
  author =	{Ernst, Michael D.},
  title =	{{Natural Language is a Programming Language: Applying Natural Language Processing to Software Development}},
  booktitle =	{2nd Summit on Advances in Programming Languages (SNAPL 2017)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-032-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{71},
  editor =	{Lerner, Benjamin S. and Bod{\'\i}k, Rastislav and Krishnamurthi, Shriram},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2017.4},
  URN =		{urn:nbn:de:0030-drops-71357},
  doi =		{10.4230/LIPIcs.SNAPL.2017.4},
  annote =	{Keywords: natural language processing, program analysis, software development}
}
Document
Toward a Dependability Case Language and Workflow for a Radiation Therapy System

Authors: Michael D. Ernst, Dan Grossman, Jon Jacky, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina Torlak, and Xi Wang

Published in: LIPIcs, Volume 32, 1st Summit on Advances in Programming Languages (SNAPL 2015)


Abstract
We present a near-future research agenda for bringing a suite of modern programming-languages verification tools - specifically interactive theorem proving, solver-aided languages, and formally defined domain-specific languages - to the development of a specific safety-critical system, a radiotherapy medical device. We sketch how we believe recent programming-languages research advances can merge with existing best practices for safety-critical systems to increase system assurance and developer productivity. We motivate hypotheses central to our agenda: That we should start with a single specific system and that we need to integrate a variety of complementary verification and synthesis tools into system development.

Cite as

Michael D. Ernst, Dan Grossman, Jon Jacky, Calvin Loncaric, Stuart Pernsteiner, Zachary Tatlock, Emina Torlak, and Xi Wang. Toward a Dependability Case Language and Workflow for a Radiation Therapy System. In 1st Summit on Advances in Programming Languages (SNAPL 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 32, pp. 103-112, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{ernst_et_al:LIPIcs.SNAPL.2015.103,
  author =	{Ernst, Michael D. and Grossman, Dan and Jacky, Jon and Loncaric, Calvin and Pernsteiner, Stuart and Tatlock, Zachary and Torlak, Emina and Wang, Xi},
  title =	{{Toward a Dependability Case Language and Workflow for a Radiation Therapy System}},
  booktitle =	{1st Summit on Advances in Programming Languages (SNAPL 2015)},
  pages =	{103--112},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-80-4},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{32},
  editor =	{Ball, Thomas and Bodík, Rastislav and Krishnamurthi, Shriram and Lerner, Benjamin S. and Morriset, Greg},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SNAPL.2015.103},
  URN =		{urn:nbn:de:0030-drops-50208},
  doi =		{10.4230/LIPIcs.SNAPL.2015.103},
  annote =	{Keywords: Synthesis, Proof Assistants, Verification, Dependability Cases, Domain Specific Languages, Radiation Therapy}
}
Document
Arc Diagrams, Flip Distances, and Hamiltonian Triangulations

Authors: Jean Cardinal, Michael Hoffmann, Vincent Kusters, Csaba D. Tóth, and Manuel Wettstein

Published in: LIPIcs, Volume 30, 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)


Abstract
We show that every triangulation (maximal planar graph) on n\ge 6 vertices can be flipped into a Hamiltonian triangulation using a sequence of less than n/2 combinatorial edge flips. The previously best upper bound uses 4-connectivity as a means to establish Hamiltonicity. But in general about 3n/5 flips are necessary to reach a 4-connected triangulation. Our result improves the upper bound on the diameter of the flip graph of combinatorial triangulations on n vertices from 5.2n-33.6 to 5n-23. We also show that for every triangulation on n vertices there is a simultaneous flip of less than 2n/3 edges to a 4-connected triangulation. The bound on the number of edges is tight, up to an additive constant. As another application we show that every planar graph on n vertices admits an arc diagram with less than n/2 biarcs, that is, after subdividing less than n/2 (of potentially 3n-6) edges the resulting graph admits a 2-page book embedding.

Cite as

Jean Cardinal, Michael Hoffmann, Vincent Kusters, Csaba D. Tóth, and Manuel Wettstein. Arc Diagrams, Flip Distances, and Hamiltonian Triangulations. In 32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 30, pp. 197-210, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.STACS.2015.197,
  author =	{Cardinal, Jean and Hoffmann, Michael and Kusters, Vincent and T\'{o}th, Csaba D. and Wettstein, Manuel},
  title =	{{Arc Diagrams, Flip Distances, and Hamiltonian Triangulations}},
  booktitle =	{32nd International Symposium on Theoretical Aspects of Computer Science (STACS 2015)},
  pages =	{197--210},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-78-1},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{30},
  editor =	{Mayr, Ernst W. and Ollinger, Nicolas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2015.197},
  URN =		{urn:nbn:de:0030-drops-49141},
  doi =		{10.4230/LIPIcs.STACS.2015.197},
  annote =	{Keywords: graph embeddings, edge flips, flip graph, separating triangles}
}
  • Refine by Author
  • 4 Ernst, Michael D.
  • 2 Kellogg, Martin
  • 2 Shadab, Narges
  • 2 Sridharan, Manu
  • 1 Bateni, MohammadHossein
  • Show More...

  • Refine by Classification
  • 2 Software and its engineering → Formal software verification
  • 2 Theory of computation → Models of computation
  • 1 Computer systems organization → Real-time systems
  • 1 Networks → Network protocols
  • 1 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 2 Typestate
  • 2 finite-state property
  • 1 CC
  • 1 Clustering
  • 1 Dependability Cases
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 4 2024
  • 2 2015
  • 2 2022
  • 1 2017