9 Search Results for "Gasieniec, Leszek"


Document
Track A: Algorithms, Complexity and Games
Optimal Bounds for Distinct Quartics

Authors: Panagiotis Charalampopoulos, Paweł Gawrychowski, and Samah Ghazawi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A fundamental concept related to strings is that of repetitions. It has been extensively studied in many versions, from both purely combinatorial and algorithmic angles. One of the most basic questions is how many distinct squares, i.e., distinct strings of the form UU, a string of length n can contain as fragments. It turns out that this is always 𝒪(n), and the bound cannot be improved to sublinear in n [Fraenkel and Simpson, JCTA 1998]. Several similar questions about repetitions in strings have been considered, and by now we seem to have a good understanding of their repetitive structure. For higher-dimensional strings, the basic concept of periodicity has been successfully extended and applied to design efficient algorithms - it is inherently more complex than for regular strings. Extending the notion of repetitions and understanding the repetitive structure of higher-dimensional strings is however far from complete. Quartics were introduced by Apostolico and Brimkov [TCS 2000] as analogues of squares in two dimensions. Charalampopoulos, Radoszewski, Rytter, Waleń, and Zuba [ESA 2020] proved that the number of distinct quartics in an n×n 2D string is 𝒪(n²log²n) and that they can be computed in 𝒪(n²log²n) time. Gawrychowski, Ghazawi, and Landau [SPIRE 2021] constructed an infinite family of n×n 2D strings with Ω(n²log n) distinct quartics. This brings the challenge of determining asymptotically tight bounds. Here, we settle both the combinatorial and the algorithmic aspects of this question: the number of distinct quartics in an n×n 2D string is 𝒪(n²log n) and they can be computed in the worst-case optimal 𝒪(n²log n) time. As expected, our solution heavily exploits the periodic structure implied by occurrences of quartics. However, the two-dimensional nature of the problem introduces some technical challenges. Somewhat surprisingly, we overcome the final challenge for the combinatorial bound using a result of Marcus and Tardos [JCTA 2004] for permutation avoidance on matrices.

Cite as

Panagiotis Charalampopoulos, Paweł Gawrychowski, and Samah Ghazawi. Optimal Bounds for Distinct Quartics. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charalampopoulos_et_al:LIPIcs.ICALP.2024.39,
  author =	{Charalampopoulos, Panagiotis and Gawrychowski, Pawe{\l} and Ghazawi, Samah},
  title =	{{Optimal Bounds for Distinct Quartics}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.39},
  URN =		{urn:nbn:de:0030-drops-201823},
  doi =		{10.4230/LIPIcs.ICALP.2024.39},
  annote =	{Keywords: 2D strings, quartics, repetitions, periodicity}
}
Document
Track A: Algorithms, Complexity and Games
Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous

Authors: Konstantinos Dogeas, Thomas Erlebach, Frank Kammer, Johannes Meintrup, and William K. Moses Jr.

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Temporal graphs are dynamic graphs where the edge set can change in each time step, while the vertex set stays the same. Exploration of temporal graphs whose snapshot in each time step is a connected graph, called connected temporal graphs, has been widely studied. In this paper, we extend the concept of graph automorphisms from static graphs to temporal graphs and show for the first time that symmetries enable faster exploration: We prove that a connected temporal graph with n vertices and orbit number r (i.e., r is the number of automorphism orbits) can be explored in O(r n^{1+ε}) time steps, for any fixed ε > 0. For r = O(n^c) for constant c < 1, this is a significant improvement over the known tight worst-case bound of Θ(n²) time steps for arbitrary connected temporal graphs. We also give two lower bounds for temporal exploration, showing that Ω(n log n) time steps are required for some inputs with r = O(1) and that Ω(rn) time steps are required for some inputs for any r with 1 ≤ r ≤ n. Moreover, we show that the techniques we develop for fast exploration can be used to derive the following result for rendezvous: Two agents with different programs and without communication ability are placed by an adversary at arbitrary vertices and given full information about the connected temporal graph, except that they do not have consistent vertex labels. Then the two agents can meet at a common vertex after O(n^{1+ε}) time steps, for any constant ε > 0. For some connected temporal graphs with the orbit number being a constant, we also present a complementary lower bound of Ω(nlog n) time steps.

Cite as

Konstantinos Dogeas, Thomas Erlebach, Frank Kammer, Johannes Meintrup, and William K. Moses Jr.. Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 55:1-55:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dogeas_et_al:LIPIcs.ICALP.2024.55,
  author =	{Dogeas, Konstantinos and Erlebach, Thomas and Kammer, Frank and Meintrup, Johannes and Moses Jr., William K.},
  title =	{{Exploiting Automorphisms of Temporal Graphs for Fast Exploration and Rendezvous}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{55:1--55:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.55},
  URN =		{urn:nbn:de:0030-drops-201989},
  doi =		{10.4230/LIPIcs.ICALP.2024.55},
  annote =	{Keywords: dynamic graphs, parameterized algorithms, algorithmic graph theory, graph automorphism, orbit number}
}
Document
Polyamorous Scheduling

Authors: Leszek Gąsieniec, Benjamin Smith, and Sebastian Wild

Published in: LIPIcs, Volume 291, 12th International Conference on Fun with Algorithms (FUN 2024)


Abstract
Finding schedules for pairwise meetings between the members of a complex social group without creating interpersonal conflict is challenging, especially when different relationships have different needs. We formally define and study the underlying optimisation problem: Polyamorous Scheduling. In Polyamorous Scheduling, we are given an edge-weighted graph and try to find a periodic schedule of matchings in this graph such that the maximal weighted waiting time between consecutive occurrences of the same edge is minimised. We show that the problem is NP-hard and that there is no efficient approximation algorithm with a better ratio than 4/3 unless P = NP. On the positive side, we obtain an O(log n)-approximation algorithm; indeed, an O(log Δ)-approximation for Δ the maximum degree, i.e., the largest number of relationships of any individual. We also define a generalisation of density from the Pinwheel Scheduling Problem, "poly density", and ask whether there exists a poly-density threshold similar to the 5/6-density threshold for Pinwheel Scheduling [Kawamura, STOC 2024]. Polyamorous Scheduling is a natural generalisation of Pinwheel Scheduling with respect to its optimisation variant, Bamboo Garden Trimming. Our work contributes the first nontrivial hardness-of-approximation reduction for any periodic scheduling problem, and opens up numerous avenues for further study of Polyamorous Scheduling.

Cite as

Leszek Gąsieniec, Benjamin Smith, and Sebastian Wild. Polyamorous Scheduling. In 12th International Conference on Fun with Algorithms (FUN 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 291, pp. 15:1-15:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gasieniec_et_al:LIPIcs.FUN.2024.15,
  author =	{G\k{a}sieniec, Leszek and Smith, Benjamin and Wild, Sebastian},
  title =	{{Polyamorous Scheduling}},
  booktitle =	{12th International Conference on Fun with Algorithms (FUN 2024)},
  pages =	{15:1--15:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-314-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{291},
  editor =	{Broder, Andrei Z. and Tamir, Tami},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2024.15},
  URN =		{urn:nbn:de:0030-drops-199234},
  doi =		{10.4230/LIPIcs.FUN.2024.15},
  annote =	{Keywords: Periodic scheduling, Pinwheel scheduling, Edge-coloring, Chromatic index, Approximation algorithms, Hardness of approximation}
}
Document
New Clocks, Optimal Line Formation and Self-Replication Population Protocols

Authors: Leszek Gąsieniec, Paul G. Spirakis, and Grzegorz Stachowiak

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
In this paper we consider a known variant of the standard population protocol model in which agents are allowed to be connected by edges, referred to as the network constructor model. During an interaction between two agents the relevant connecting edge can be formed, maintained or eliminated by the transition function. Since pairs of agents are chosen uniformly at random the status of each edge is updated every Θ(n²) interactions in expectation which coincides with Θ(n) parallel time. This phenomenon provides a natural lower bound on the time complexity for any non-trivial network construction designed for this variant. This is in contrast with the standard population protocol model in which efficient protocols operate in O(polylog n) parallel time. The main focus of this paper is on efficient manipulation of linear structures including formation, self-replication and distribution (including pipelining) of complex information in the adopted model. - We propose and analyze a novel edge based phase clock counting parallel time Θ(nlog n) in the network constructor model, showing also that its leader based counterpart provides the same time guarantees in the standard population protocol model. Note that all currently known phase clocks can count parallel time not exceeding O(polylog n). - We prove that any spanning line formation protocol requires Ω(nlog n) parallel time if high probability guaranty is imposed. We also show that the new clock enables an optimal O(nlog n) parallel time spanning line construction, which improves dramatically on the best currently known O(n²) parallel time protocol, solving the main open problem in the considered model [O. Michail and P. Spirakis, 2016]. - We propose a new probabilistic bubble-sort algorithm in which random comparisons and transfers are limited to the adjacent positions in the sequence. Utilising a novel potential function reasoning we show that rather surprisingly this probabilistic sorting procedure requires O(n²) comparisons in expectation and whp, and is on par with its deterministic counterpart. - We propose the first population protocol allowing self-replication of a strand of an arbitrary length k (carrying k-bit message of size independent of the state space) in parallel time O(n(k+log n)). The bit pipelining mechanism and the time complexity analysis of self-replication process mimic those used in the probabilistic bubble-sort argument. The new protocol permits also simultaneous self-replication, where l copies of the strand can be created in parallel in time O(n(k+log n)log l). We also discuss application of the strand self-replication protocol to pattern matching. All protocols are always correct and provide time guarantees with high probability defined as 1-n^(-η), for a constant η > 0.

Cite as

Leszek Gąsieniec, Paul G. Spirakis, and Grzegorz Stachowiak. New Clocks, Optimal Line Formation and Self-Replication Population Protocols. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 33:1-33:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gasieniec_et_al:LIPIcs.STACS.2023.33,
  author =	{G\k{a}sieniec, Leszek and Spirakis, Paul G. and Stachowiak, Grzegorz},
  title =	{{New Clocks, Optimal Line Formation and Self-Replication Population Protocols}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{33:1--33:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.33},
  URN =		{urn:nbn:de:0030-drops-176857},
  doi =		{10.4230/LIPIcs.STACS.2023.33},
  annote =	{Keywords: Population protocols, constructors, probabilistic bubble-sort, self-replication}
}
Document
Brief Announcement
Brief Announcement: New Clocks, Fast Line Formation and Self-Replication Population Protocols

Authors: Leszek Gąsieniec, Paul Spirakis, and Grzegorz Stachowiak

Published in: LIPIcs, Volume 246, 36th International Symposium on Distributed Computing (DISC 2022)


Abstract
In this paper we consider a known variant of the standard population protocol model in which agents can be connected by edges, referred to as the network constructor model. During an interaction between two agents the relevant connecting edge can be formed, maintained or eliminated by the transition function. The state space of agents is fixed (constant size) and the size n of the population is not known, i.e., not hard-coded in the transition function. Since pairs of agents are chosen uniformly at random the status of each edge is updated every Θ(n²) interactions in expectation which coincides with Θ(n) parallel time. This phenomenon provides a natural lower bound on the time complexity for any non-trivial network construction designed for this variant. This is in contrast with the standard population protocol model in which efficient protocols operate in O(polylog n) parallel time. The main focus in this paper is on efficient manipulation of linear structures including formation, self-replication and distribution (including pipelining) of complex information in the adopted model. - We propose and analyse a novel edge based phase clock counting parallel time Θ(nlog n) in the network constructor model, showing also that its leader based counterpart provides the same time guaranties in the standard population protocol model. Note that all currently known phase clocks can count parallel time not exceeding O(polylog n). - The new clock enables a nearly optimal O(nlog n) parallel time spanning line construction (a key component of universal network construction), which improves dramatically on the best currently known O(n²) parallel time protocol, solving the main open problem in the considered model [O. Michail and P. Spirakis, 2016]. - We propose a new probabilistic bubble-sort algorithm in which random comparisons and transfers are allowed only between the adjacent positions in the sequence. Utilising a novel potential function reasoning we show that rather surprisingly this probabilistic sorting (via conditional pipelining) procedure requires O(n²) comparisons in expectation and whp, and is on par with its deterministic counterpart. - We propose the first population protocol allowing self-replication of a strand of an arbitrary length k (carrying a k-bit message of size independent of the state space) in parallel time O(n(k+log n)). The pipelining mechanism and the time complexity analysis of the strand self-replication protocol mimic those used in the probabilistic bubble-sort. The new protocol permits also simultaneous self-replication, where l copies of the strand can be created in time O(n(k+log n)log l). Finally, we discuss application of the strand self-replication protocol to pattern matching. Our protocols are always correct and provide time guaranties with high probability defined as 1-n^{-η}, for a constant η > 0.

Cite as

Leszek Gąsieniec, Paul Spirakis, and Grzegorz Stachowiak. Brief Announcement: New Clocks, Fast Line Formation and Self-Replication Population Protocols. In 36th International Symposium on Distributed Computing (DISC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 246, pp. 44:1-44:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gasieniec_et_al:LIPIcs.DISC.2022.44,
  author =	{G\k{a}sieniec, Leszek and Spirakis, Paul and Stachowiak, Grzegorz},
  title =	{{Brief Announcement: New Clocks, Fast Line Formation and Self-Replication Population Protocols}},
  booktitle =	{36th International Symposium on Distributed Computing (DISC 2022)},
  pages =	{44:1--44:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-255-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{246},
  editor =	{Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2022.44},
  URN =		{urn:nbn:de:0030-drops-172351},
  doi =		{10.4230/LIPIcs.DISC.2022.44},
  annote =	{Keywords: Population protocols, network constructors, probabilistic bubble-sort, self-replication}
}
Document
Invited Paper
Time, Clocks and Efficiency of Population Protocols (Invited Paper)

Authors: Leszek Gąsieniec and Grzegorz Stachowiak

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
The model of population protocols is used to study distributed processes based on pairwise interactions between simple anonymous agents drawn from a large population of size n. The order in which agents meet in pairs is determined by the random scheduler, s.t., each consecutive pair is chosen uniformly at random. After each interaction the state of the relevant agents are amended according to the predefined transition function (the actual code of the algorithm) which governs the considered process. The state space of agents is often fixed and the size n is not known in advance, i.e., not hard-coded in the transition function. We assume that a population protocol starts in the predefined initial configuration of agents' states representing the input. And if successful, the protocol stabilises in a final configuration of states forming the output representing the solution to the considered problem. The time complexity of a population protocol refers to the number of interactions required to stabilise this protocol in a final configuration. We also define parallel time as the time complexity divided by n. Note that the parallel time of the system and the expected local time of each agent, i.e., the number of interactions observed by each agent, are correlated. Several mechanisms, known as phase clocks, have been developed to measure parallel time more accurately than counting local interactions. Most of the clocks target counting Θ(log n) parallel time required to fully synchronise all agents in the population. There are leader (and junta) based phase clocks which utilise a fixed number of states [D. Angluin et al., 2008; L. Gąsieniec and G. Stachowiak, 2021]. This type of clocks allows also counting any poly-logarithmic time while preserving fix state utilisation. The other type refers to leaderless clocks utilising Θ(log n) states [D. Alistarh et al., 2018; D. Doty et al., 2021]. This type allows approximate counting of parallel time as fixed resolution clocks [D. Doty et al., 2021] or oscillators [D. Alistarh et al., 2018]. Another clock type introduced recently in [L. Gąsieniec et al., 2021] enables counting Θ(nlog n) parallel time utilising a fixed number of states and either leaders or connections in the network constructor model. We also discuss parallel efficiency of population protocols referring to protocols operating in Θ(polylog n) parallel time, we propose extensions of the population protocol model leading to further improvement in state and time utilisation, and we state some open problems.

Cite as

Leszek Gąsieniec and Grzegorz Stachowiak. Time, Clocks and Efficiency of Population Protocols (Invited Paper). In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 2:1-2:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gasieniec_et_al:LIPIcs.SWAT.2022.2,
  author =	{G\k{a}sieniec, Leszek and Stachowiak, Grzegorz},
  title =	{{Time, Clocks and Efficiency of Population Protocols}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{2:1--2:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.2},
  URN =		{urn:nbn:de:0030-drops-161624},
  doi =		{10.4230/LIPIcs.SWAT.2022.2},
  annote =	{Keywords: Population protocols, phase clocks, oscillators, parallel time and efficiency}
}
Document
Efficient Assignment of Identities in Anonymous Populations

Authors: Leszek Gąsieniec, Jesper Jansson, Christos Levcopoulos, and Andrzej Lingas

Published in: LIPIcs, Volume 217, 25th International Conference on Principles of Distributed Systems (OPODIS 2021)


Abstract
We consider the fundamental problem of assigning distinct labels to agents in the probabilistic model of population protocols. Our protocols operate under the assumption that the size n of the population is embedded in the transition function. Their efficiency is expressed in terms of the number of states utilized by agents, the size of the range from which the labels are drawn, and the expected number of interactions required by our solutions. Our primary goal is to provide efficient protocols for this fundamental problem complemented with tight lower bounds in all the three aspects. W.h.p. (with high probability), our labeling protocols are silent, i.e., eventually each agent reaches its final state and remains in it forever, and they are safe, i.e., never update the label assigned to any single agent. We first present a silent w.h.p. and safe labeling protocol that draws labels from the range [1,2n]. Both the number of interactions required and the number of states used by the protocol are asymptotically optimal, i.e., O(n log n) w.h.p. and O(n), respectively. Next, we present a generalization of the protocol, where the range of assigned labels is [1,(1+ε) n]. The generalized protocol requires O(n log n / ε) interactions in order to complete the assignment of distinct labels from [1,(1+ε) n] to the n agents, w.h.p. It is also silent w.h.p. and safe, and uses (2+ε)n+O(n^c) states, for any positive c < 1. On the other hand, we consider the so-called pool labeling protocols that include our fast protocols. We show that the expected number of interactions required by any pool protocol is ≥ (n²)/(r+1), when the labels range is 1,… , n+r < 2n. Furthermore, we provide a protocol which uses only n+5√ n +O(n^c) states, for any c < 1, and draws labels from the range 1,… ,n. The expected number of interactions required by the protocol is O(n³). Once a unique leader is elected it produces a valid labeling and it is silent and safe. On the other hand, we show that (even if a unique leader is given in advance) any silent protocol that produces a valid labeling and is safe with probability > 1-(1/n), uses ≥ n+√{(n-1)/2}-1 states. Hence, our protocol is almost state-optimal. We also present a generalization of the protocol to include a trade-off between the number of states and the expected number of interactions. Finally, we show that for any silent and safe labeling protocol utilizing n+t < 2n states, the expected number of interactions required to achieve a valid labeling is ≥ (n²)/(t+1).

Cite as

Leszek Gąsieniec, Jesper Jansson, Christos Levcopoulos, and Andrzej Lingas. Efficient Assignment of Identities in Anonymous Populations. In 25th International Conference on Principles of Distributed Systems (OPODIS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 217, pp. 12:1-12:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gasieniec_et_al:LIPIcs.OPODIS.2021.12,
  author =	{G\k{a}sieniec, Leszek and Jansson, Jesper and Levcopoulos, Christos and Lingas, Andrzej},
  title =	{{Efficient Assignment of Identities in Anonymous Populations}},
  booktitle =	{25th International Conference on Principles of Distributed Systems (OPODIS 2021)},
  pages =	{12:1--12:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-219-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{217},
  editor =	{Bramas, Quentin and Gramoli, Vincent and Milani, Alessia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2021.12},
  URN =		{urn:nbn:de:0030-drops-157871},
  doi =		{10.4230/LIPIcs.OPODIS.2021.12},
  annote =	{Keywords: population protocol, state efficiency, time efficiency, one-way epidemics, leader election, agent identities}
}
Document
Deterministic Population Protocols for Exact Majority and Plurality

Authors: Leszek Gasieniec, David Hamilton, Russell Martin, Paul G. Spirakis, and Grzegorz Stachowiak

Published in: LIPIcs, Volume 70, 20th International Conference on Principles of Distributed Systems (OPODIS 2016)


Abstract
In this paper we study space-efficient deterministic population protocols for several variants of the majority problem including plurality consensus. We focus on space efficient majority protocols in populations with an arbitrary number of colours C represented by k-bit labels, where k = ceiling (log C). In particular, we present asymptotically space-optimal (with respect to the adopted k-bit representation of colours) protocols for (1) the absolute majority problem, i.e., a protocol which decides whether a single colour dominates all other colours considered together, and (2) the relative majority problem, also known in the literature as plurality consensus, in which colours declare their volume superiority versus other individual colours. The new population protocols proposed in this paper rely on a dynamic formulation of the majority problem in which the colours originally present in the population can be changed by an external force during the communication process. The considered dynamic formulation is based on the concepts studied by D. Angluin et al. and O. Michail et al. about stabilizing inputs and composition of population protocols. Also, the protocols presented in this paper use a composition of some known protocols for static and dynamic majority.

Cite as

Leszek Gasieniec, David Hamilton, Russell Martin, Paul G. Spirakis, and Grzegorz Stachowiak. Deterministic Population Protocols for Exact Majority and Plurality. In 20th International Conference on Principles of Distributed Systems (OPODIS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 70, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gasieniec_et_al:LIPIcs.OPODIS.2016.14,
  author =	{Gasieniec, Leszek and Hamilton, David and Martin, Russell and Spirakis, Paul G. and Stachowiak, Grzegorz},
  title =	{{Deterministic Population Protocols for Exact Majority and Plurality}},
  booktitle =	{20th International Conference on Principles of Distributed Systems (OPODIS 2016)},
  pages =	{14:1--14:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-031-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{70},
  editor =	{Fatourou, Panagiota and Jim\'{e}nez, Ernesto and Pedone, Fernando},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2016.14},
  URN =		{urn:nbn:de:0030-drops-70837},
  doi =		{10.4230/LIPIcs.OPODIS.2016.14},
  annote =	{Keywords: Deterministic population protocols, majority, plurality consenus}
}
Document
Optimal Packed String Matching

Authors: Oren Ben-Kiki, Philip Bille, Dany Breslauer, Leszek Gasieniec, Roberto Grossi, and Oren Weimann

Published in: LIPIcs, Volume 13, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)


Abstract
In the packed string matching problem, each machine word accomodates alpha characters, thus an n-character text occupies n/alpha memory words. We extend the Crochemore-Perrin constant-space O(n)-time string matching algorithm to run in optimal O(n/alpha) time and even in real-time, achieving a factor alpha speedup over traditional algorithms that examine each character individually. Our solution can be efficiently implemented, unlike prior theoretical packed string matching work. We adapt the standard RAM model and only use its AC0 instructions (i.e. no multiplication) plus two specialized AC0 packed string instructions. The main string-matching instruction is available in commodity processors (i.e. Intel's SSE4.2 and AVX Advanced String Operations); the other maximal-suffix instruction is only required during pattern preprocessing. In the absence of these two specialized instructions, we propose theoretically-efficient emulation using integer multiplication (not AC0) and table lookup.

Cite as

Oren Ben-Kiki, Philip Bille, Dany Breslauer, Leszek Gasieniec, Roberto Grossi, and Oren Weimann. Optimal Packed String Matching. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011). Leibniz International Proceedings in Informatics (LIPIcs), Volume 13, pp. 423-432, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2011)


Copy BibTex To Clipboard

@InProceedings{benkiki_et_al:LIPIcs.FSTTCS.2011.423,
  author =	{Ben-Kiki, Oren and Bille, Philip and Breslauer, Dany and Gasieniec, Leszek and Grossi, Roberto and Weimann, Oren},
  title =	{{Optimal Packed String Matching}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2011)},
  pages =	{423--432},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-34-7},
  ISSN =	{1868-8969},
  year =	{2011},
  volume =	{13},
  editor =	{Chakraborty, Supratik and Kumar, Amit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2011.423},
  URN =		{urn:nbn:de:0030-drops-33558},
  doi =		{10.4230/LIPIcs.FSTTCS.2011.423},
  annote =	{Keywords: String matching, bit parallelism, real time, space efficiency}
}
  • Refine by Author
  • 5 Gąsieniec, Leszek
  • 4 Stachowiak, Grzegorz
  • 2 Gasieniec, Leszek
  • 2 Spirakis, Paul G.
  • 1 Ben-Kiki, Oren
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Distributed algorithms
  • 1 Theory of computation
  • 1 Theory of computation → Complexity theory and logic
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Distributed computing models
  • Show More...

  • Refine by Keyword
  • 3 Population protocols
  • 2 probabilistic bubble-sort
  • 2 self-replication
  • 1 2D strings
  • 1 Approximation algorithms
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 3 2022
  • 3 2024
  • 1 2011
  • 1 2017
  • 1 2023