7 Search Results for "Haramaty, Elad"


Document
RANDOM
Interactive Coding with Unbounded Noise

Authors: Eden Fargion, Ran Gelles, and Meghal Gupta

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
Interactive coding allows two parties to conduct a distributed computation despite noise corrupting a certain fraction of their communication. Dani et al. (Inf. and Comp., 2018) suggested a novel setting in which the amount of noise is unbounded and can significantly exceed the length of the (noise-free) computation. While no solution is possible in the worst case, under the restriction of oblivious noise, Dani et al. designed a coding scheme that succeeds with a polynomially small failure probability. We revisit the question of conducting computations under this harsh type of noise and devise a computationally-efficient coding scheme that guarantees the success of the computation, except with an exponentially small probability. This higher degree of correctness matches the case of coding schemes with a bounded fraction of noise. Our simulation of an N-bit noise-free computation in the presence of T corruptions, communicates an optimal number of O(N+T) bits and succeeds with probability 1-2^(-Ω(N)). We design this coding scheme by introducing an intermediary noise model, where an oblivious adversary can choose the locations of corruptions in a worst-case manner, but the effect of each corruption is random: the noise either flips the transmission with some probability or otherwise erases it. This randomized abstraction turns out to be instrumental in achieving an optimal coding scheme.

Cite as

Eden Fargion, Ran Gelles, and Meghal Gupta. Interactive Coding with Unbounded Noise. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fargion_et_al:LIPIcs.APPROX/RANDOM.2024.43,
  author =	{Fargion, Eden and Gelles, Ran and Gupta, Meghal},
  title =	{{Interactive Coding with Unbounded Noise}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.43},
  URN =		{urn:nbn:de:0030-drops-210361},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.43},
  annote =	{Keywords: Distributed Computation with Noisy Links, Interactive Coding, Noise Resilience, Unbounded Noise, Random Erasure-Flip Noise}
}
Document
Pseudorandomness, Symmetry, Smoothing: I

Authors: Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We prove several new results about bounded uniform and small-bias distributions. A main message is that, small-bias, even perturbed with noise, does not fool several classes of tests better than bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth circuits. In particular, we obtain small-bias distributions that - achieve an optimal lower bound on their statistical distance to any bounded-uniform distribution. This closes a line of research initiated by Alon, Goldreich, and Mansour in 2003, and improves on a result by O'Donnell and Zhao. - have heavier tail mass than the uniform distribution. This answers a question posed by several researchers including Bun and Steinke. - rule out a popular paradigm for constructing pseudorandom generators, originating in a 1989 work by Ajtai and Wigderson. This again answers a question raised by several researchers. For branching programs, our result matches a bound by Forbes and Kelley. Our small-bias distributions above are symmetric. We show that the xor of any two symmetric small-bias distributions fools any bounded function. Hence our examples cannot be extended to the xor of two small-bias distributions, another popular paradigm whose power remains unknown. We also generalize and simplify the proof of a result of Bazzi.

Cite as

Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola. Pseudorandomness, Symmetry, Smoothing: I. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 18:1-18:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2024.18,
  author =	{Derksen, Harm and Ivanov, Peter and Lee, Chin Ho and Viola, Emanuele},
  title =	{{Pseudorandomness, Symmetry, Smoothing: I}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{18:1--18:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.18},
  URN =		{urn:nbn:de:0030-drops-204144},
  doi =		{10.4230/LIPIcs.CCC.2024.18},
  annote =	{Keywords: pseudorandomness, k-wise uniform distributions, small-bias distributions, noise, symmetric tests, thresholds, Krawtchouk polynomials}
}
Document
One-Tape Turing Machine and Branching Program Lower Bounds for MCSP

Authors: Mahdi Cheraghchi, Shuichi Hirahara, Dimitrios Myrisiotis, and Yuichi Yoshida

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
For a size parameter s: ℕ → ℕ, the Minimum Circuit Size Problem (denoted by MCSP[s(n)]) is the problem of deciding whether the minimum circuit size of a given function f : {0,1}ⁿ → {0,1} (represented by a string of length N : = 2ⁿ) is at most a threshold s(n). A recent line of work exhibited "hardness magnification" phenomena for MCSP: A very weak lower bound for MCSP implies a breakthrough result in complexity theory. For example, McKay, Murray, and Williams (STOC 2019) implicitly showed that, for some constant μ₁ > 0, if MCSP[2^{μ₁⋅ n}] cannot be computed by a one-tape Turing machine (with an additional one-way read-only input tape) running in time N^{1.01}, then P≠NP. In this paper, we present the following new lower bounds against one-tape Turing machines and branching programs: 1) A randomized two-sided error one-tape Turing machine (with an additional one-way read-only input tape) cannot compute MCSP[2^{μ₂⋅n}] in time N^{1.99}, for some constant μ₂ > μ₁. 2) A non-deterministic (or parity) branching program of size o(N^{1.5}/log N) cannot compute MKTP, which is a time-bounded Kolmogorov complexity analogue of MCSP. This is shown by directly applying the Nečiporuk method to MKTP, which previously appeared to be difficult. 3) The size of any non-deterministic, co-non-deterministic, or parity branching program computing MCSP is at least N^{1.5-o(1)}. These results are the first non-trivial lower bounds for MCSP and MKTP against one-tape Turing machines and non-deterministic branching programs, and essentially match the best-known lower bounds for any explicit functions against these computational models. The first result is based on recent constructions of pseudorandom generators for read-once oblivious branching programs (ROBPs) and combinatorial rectangles (Forbes and Kelley, FOCS 2018; Viola 2019). En route, we obtain several related results: 1) There exists a (local) hitting set generator with seed length Õ(√N) secure against read-once polynomial-size non-deterministic branching programs on N-bit inputs. 2) Any read-once co-non-deterministic branching program computing MCSP must have size at least 2^Ω̃(N).

Cite as

Mahdi Cheraghchi, Shuichi Hirahara, Dimitrios Myrisiotis, and Yuichi Yoshida. One-Tape Turing Machine and Branching Program Lower Bounds for MCSP. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 23:1-23:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cheraghchi_et_al:LIPIcs.STACS.2021.23,
  author =	{Cheraghchi, Mahdi and Hirahara, Shuichi and Myrisiotis, Dimitrios and Yoshida, Yuichi},
  title =	{{One-Tape Turing Machine and Branching Program Lower Bounds for MCSP}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{23:1--23:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.23},
  URN =		{urn:nbn:de:0030-drops-136681},
  doi =		{10.4230/LIPIcs.STACS.2021.23},
  annote =	{Keywords: Minimum Circuit Size Problem, Kolmogorov Complexity, One-Tape Turing Machines, Branching Programs, Lower Bounds, Pseudorandom Generators, Hitting Set Generators}
}
Document
Error Correcting Codes for Uncompressed Messages

Authors: Ofer Grossman and Justin Holmgren

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Most types of messages we transmit (e.g., video, audio, images, text) are not fully compressed, since they do not have known efficient and information theoretically optimal compression algorithms. When transmitting such messages, standard error correcting codes fail to take advantage of the fact that messages are not fully compressed. We show that in this setting, it is sub-optimal to use standard error correction. We consider a model where there is a set of "valid messages" which the sender may send that may not be efficiently compressible, but where it is possible for the receiver to recognize valid messages. In this model, we construct a (probabilistic) encoding procedure that achieves better tradeoffs between data rates and error-resilience (compared to just applying a standard error correcting code). Additionally, our techniques yield improved efficiently decodable (probabilistic) codes for fully compressed messages (the standard setting where the set of valid messages is all binary strings) in the high-rate regime.

Cite as

Ofer Grossman and Justin Holmgren. Error Correcting Codes for Uncompressed Messages. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{grossman_et_al:LIPIcs.ITCS.2021.43,
  author =	{Grossman, Ofer and Holmgren, Justin},
  title =	{{Error Correcting Codes for Uncompressed Messages}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{43:1--43:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.43},
  URN =		{urn:nbn:de:0030-drops-135828},
  doi =		{10.4230/LIPIcs.ITCS.2021.43},
  annote =	{Keywords: Coding Theory, List Decoding}
}
Document
Interactive Coding with Constant Round and Communication Blowup

Authors: Klim Efremenko, Elad Haramaty, and Yael Tauman Kalai

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
The problem of constructing error-resilient interactive protocols was introduced in the seminal works of Schulman (FOCS 1992, STOC 1993). These works show how to convert any two-party interactive protocol into one that is resilient to constant-fraction of error, while blowing up the communication by only a constant factor. Since these seminal works, there have been many followup works which improve the error rate, the communication rate, and the computational efficiency. All these works only consider only an increase in communication complexity and did not consider an increase in round complexity. This work is the first one that considers the blowup of round complexity in noisy setting. While techniques from other papers can be easily adapted encode protocols with arbitrarily round complexity this coding schemes will lead to large(and usually unbounded) increase in round complexity of the protocol. In this work, we show how to convert any protocol Π, with no a priori known communication bound, into an error-resilient protocol Π', with comparable computational efficiency, that is resilient to constant fraction of adversarial error, while blowing up both the communication complexity and the round complexity by at most a constant factor. We consider the model where in each round each party may send a message of arbitrary length, where the length of the messages and the length of the protocol may be adaptive, and may depend on the private inputs of the parties and on previous communication. We consider the adversarial error model, where ε-fraction of the communication may be corrupted, where we allow each corruption to be an insertion or deletion (in addition to toggle). In addition, we try to minimize the blowup parameters: In particular, we construct such Π' with (1+Õ(ε^(1/4))) blowup in communication and O(1) blowup in rounds. We also show how to reduce the blowup in rounds at the expense of increasing the blowup in communication, and construct Π' where both the blowup in rounds and communication, approaches one (i.e., no blowup) as ε approaches zero. We give "evidence" that our parameters are "close to" optimal.

Cite as

Klim Efremenko, Elad Haramaty, and Yael Tauman Kalai. Interactive Coding with Constant Round and Communication Blowup. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 7:1-7:34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{efremenko_et_al:LIPIcs.ITCS.2020.7,
  author =	{Efremenko, Klim and Haramaty, Elad and Kalai, Yael Tauman},
  title =	{{Interactive Coding with Constant Round and Communication Blowup}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{7:1--7:34},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.7},
  URN =		{urn:nbn:de:0030-drops-116927},
  doi =		{10.4230/LIPIcs.ITCS.2020.7},
  annote =	{Keywords: Interactive Coding, Round Complexity, Error Correcting Codes}
}
Document
Compression in a Distributed Setting

Authors: Badih Ghazi, Elad Haramaty, Pritish Kamath, and Madhu Sudan

Published in: LIPIcs, Volume 67, 8th Innovations in Theoretical Computer Science Conference (ITCS 2017)


Abstract
Motivated by an attempt to understand the formation and development of (human) language, we introduce a "distributed compression" problem. In our problem a sequence of pairs of players from a set of K players are chosen and tasked to communicate messages drawn from an unknown distribution Q. Arguably languages are created and evolve to compress frequently occurring messages, and we focus on this aspect. The only knowledge that players have about the distribution Q is from previously drawn samples, but these samples differ from player to player. The only common knowledge between the players is restricted to a common prior distribution P and some constant number of bits of information (such as a learning algorithm). Letting T_epsilon denote the number of iterations it would take for a typical player to obtain an epsilon-approximation to Q in total variation distance, we ask whether T_epsilon iterations suffice to compress the messages down roughly to their entropy and give a partial positive answer. We show that a natural uniform algorithm can compress the communication down to an average cost per message of O(H(Q) + log (D(P || Q)) in tilde{O}(T_epsilon) iterations while allowing for O(epsilon)-error, where D(. || .) denotes the KL-divergence between distributions. For large divergences this compares favorably with the static algorithm that ignores all samples and compresses down to H(Q) + D(P || Q) bits, while not requiring T_epsilon * K iterations that it would take players to develop optimal but separate compressions for each pair of players. Along the way we introduce a "data-structural" view of the task of communicating with a natural language and show that our natural algorithm can also be implemented by an efficient data structure, whose storage is comparable to the storage requirements of Q and whose query complexity is comparable to the lengths of the message to be compressed. Our results give a plausible mathematical analogy to the mechanisms by which human languages get created and evolve, and in particular highlights the possibility of coordination towards a joint task (agreeing on a language) while engaging in distributed learning.

Cite as

Badih Ghazi, Elad Haramaty, Pritish Kamath, and Madhu Sudan. Compression in a Distributed Setting. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 67, pp. 19:1-19:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{ghazi_et_al:LIPIcs.ITCS.2017.19,
  author =	{Ghazi, Badih and Haramaty, Elad and Kamath, Pritish and Sudan, Madhu},
  title =	{{Compression in a Distributed Setting}},
  booktitle =	{8th Innovations in Theoretical Computer Science Conference (ITCS 2017)},
  pages =	{19:1--19:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-029-3},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{67},
  editor =	{Papadimitriou, Christos H.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2017.19},
  URN =		{urn:nbn:de:0030-drops-81763},
  doi =		{10.4230/LIPIcs.ITCS.2017.19},
  annote =	{Keywords: Distributed Compression, Communication, Language Evolution, Isolating Hash Families}
}
Document
Bounded Independence Plus Noise Fools Products

Authors: Elad Haramaty, Chin Ho Lee, and Emanuele Viola

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
Let D be a b-wise independent distribution over {0,1}^m. Let E be the "noise" distribution over {0,1}^m where the bits are independent and each bit is 1 with probability eta/2. We study which tests f: {0,1}^m -> [-1,1] are epsilon-fooled by D+E, i.e., |E[f(D+E)] - E[f(U)]| <= epsilon where U is the uniform distribution. We show that D+E epsilon-fools product tests f: ({0,1}^n)^k -> [-1,1] given by the product of k bounded functions on disjoint n-bit inputs with error epsilon = k(1-eta)^{Omega(b^2/m)}, where m = nk and b >= n. This bound is tight when b = Omega(m) and eta >= (log k)/m. For b >= m^{2/3} log m and any constant eta the distribution D+E also 0.1-fools log-space algorithms. We develop two applications of this type of results. First, we prove communication lower bounds for decoding noisy codewords of length m split among k parties. For Reed-Solomon codes of dimension m/k where k = O(1), communication Omega(eta m) - O(log m) is required to decode one message symbol from a codeword with eta m errors, and communication O(eta m log m) suffices. Second, we obtain pseudorandom generators. We can epsilon-fool product tests f: ({0,1}^n)^k -> [-1,1] under any permutation of the bits with seed lengths 2n + O~(k^2 log(1/epsilon)) and O(n) + O~(sqrt{nk log 1/epsilon}). Previous generators have seed lengths >= nk/2 or >= n sqrt{n k}. For the special case where the k bounded functions have range {0,1} the previous generators have seed length >= (n+log k)log(1/epsilon).

Cite as

Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded Independence Plus Noise Fools Products. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 14:1-14:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{haramaty_et_al:LIPIcs.CCC.2017.14,
  author =	{Haramaty, Elad and Lee, Chin Ho and Viola, Emanuele},
  title =	{{Bounded Independence Plus Noise Fools Products}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{14:1--14:30},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.14},
  URN =		{urn:nbn:de:0030-drops-75188},
  doi =		{10.4230/LIPIcs.CCC.2017.14},
  annote =	{Keywords: ounded independence, Noise, Product tests, Error-correcting codes, Pseudorandomness}
}
  • Refine by Author
  • 3 Haramaty, Elad
  • 2 Lee, Chin Ho
  • 2 Viola, Emanuele
  • 1 Cheraghchi, Mahdi
  • 1 Derksen, Harm
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Interactive computation
  • 2 Theory of computation → Pseudorandomness and derandomization
  • 1 Computing methodologies → Distributed algorithms
  • 1 Mathematics of computing → Coding theory
  • 1 Theory of computation → Circuit complexity
  • Show More...

  • Refine by Keyword
  • 2 Interactive Coding
  • 1 Branching Programs
  • 1 Coding Theory
  • 1 Communication
  • 1 Distributed Compression
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2017
  • 2 2021
  • 2 2024
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail