30 Search Results for "Heuberger, Clemens"


Volume

LIPIcs, Volume 159

31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)

AofA 2020, June 15-19, 2020, Klagenfurt, Austria (Virtual Conference)

Editors: Michael Drmota and Clemens Heuberger

Document
Complete Volume
LIPIcs, Volume 159, AofA 2020, Complete Volume

Authors: Michael Drmota and Clemens Heuberger

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
LIPIcs, Volume 159, AofA 2020, Complete Volume

Cite as

31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 1-402, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{drmota_et_al:LIPIcs.AofA.2020,
  title =	{{LIPIcs, Volume 159, AofA 2020, Complete Volume}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{1--402},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020},
  URN =		{urn:nbn:de:0030-drops-120296},
  doi =		{10.4230/LIPIcs.AofA.2020},
  annote =	{Keywords: LIPIcs, Volume 159, AofA 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Michael Drmota and Clemens Heuberger

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 0:i-0:xii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{drmota_et_al:LIPIcs.AofA.2020.0,
  author =	{Drmota, Michael and Heuberger, Clemens},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{0:i--0:xii},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.0},
  URN =		{urn:nbn:de:0030-drops-120309},
  doi =		{10.4230/LIPIcs.AofA.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution

Authors: Andrei Asinowski and Cyril Banderier

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
In this article, we analyse the joint distribution of some given set of patterns in fundamental combinatorial structures such as words and random walks (directed lattice paths on ℤ²). Our method relies on a vectorial generalization of the classical kernel method, and on a matricial generalization of the autocorrelation polynomial (thus extending the univariate case of Guibas and Odlyzko). This gives access to the multivariate generating functions, for walks, meanders (walks constrained to be above the x-axis), and excursions (meanders constrained to end on the x-axis). We then demonstrate the power of our methods by obtaining closed-form expressions for an infinite family of models, in terms of simple combinatorial quantities. Finally, we prove that the joint distribution of the patterns in walks/bridges/excursions/meanders satisfies a multivariate Gaussian limit law.

Cite as

Andrei Asinowski and Cyril Banderier. On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 1:1-1:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{asinowski_et_al:LIPIcs.AofA.2020.1,
  author =	{Asinowski, Andrei and Banderier, Cyril},
  title =	{{On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{1:1--1:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.1},
  URN =		{urn:nbn:de:0030-drops-120317},
  doi =		{10.4230/LIPIcs.AofA.2020.1},
  annote =	{Keywords: Lattice path, Dyck path, Motzkin path, generating function, algebraic function, kernel method, context-free grammar, multivariate Gaussian distribution}
}
Document
Latticepathology and Symmetric Functions (Extended Abstract)

Authors: Cyril Banderier, Marie-Louise Lackner, and Michael Wallner

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
In this article, we revisit and extend a list of formulas based on lattice path surgery: cut-and-paste methods, factorizations, the kernel method, etc. For this purpose, we focus on the natural model of directed lattice paths (also called generalized Dyck paths). We introduce the notion of prime walks, which appear to be the key structure to get natural decompositions of excursions, meanders, bridges, directly leading to the associated context-free grammars. This allows us to give bijective proofs of bivariate versions of Spitzer/Sparre Andersen/Wiener - Hopf formulas, thus capturing joint distributions. We also show that each of the fundamental families of symmetric polynomials corresponds to a lattice path generating function, and that these symmetric polynomials are accordingly needed to express the asymptotic enumeration of these paths and some parameters of limit laws. En passant, we give two other small results which have their own interest for folklore conjectures of lattice paths (non-analyticity of the small roots in the kernel method, and universal positivity of the variability condition occurring in many Gaussian limit law schemes).

Cite as

Cyril Banderier, Marie-Louise Lackner, and Michael Wallner. Latticepathology and Symmetric Functions (Extended Abstract). In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 2:1-2:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{banderier_et_al:LIPIcs.AofA.2020.2,
  author =	{Banderier, Cyril and Lackner, Marie-Louise and Wallner, Michael},
  title =	{{Latticepathology and Symmetric Functions (Extended Abstract)}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{2:1--2:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.2},
  URN =		{urn:nbn:de:0030-drops-120329},
  doi =		{10.4230/LIPIcs.AofA.2020.2},
  annote =	{Keywords: Lattice path, generating function, symmetric function, algebraic function, kernel method, context-free grammar, Sparre Andersen formula, Spitzer’s identity, Wiener - Hopf factorization}
}
Document
The Complexity of the Approximate Multiple Pattern Matching Problem for Random Strings

Authors: Frédérique Bassino, Tsinjo Rakotoarimalala, and Andrea Sportiello

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
We describe a multiple string pattern matching algorithm which is well-suited for approximate search and dictionaries composed of words of different lengths. We prove that this algorithm has optimal complexity rate up to a multiplicative constant, for arbitrary dictionaries. This extends to arbitrary dictionaries the classical results of Yao [SIAM J. Comput. 8, 1979], and Chang and Marr [Proc. CPM94, 1994].

Cite as

Frédérique Bassino, Tsinjo Rakotoarimalala, and Andrea Sportiello. The Complexity of the Approximate Multiple Pattern Matching Problem for Random Strings. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bassino_et_al:LIPIcs.AofA.2020.3,
  author =	{Bassino, Fr\'{e}d\'{e}rique and Rakotoarimalala, Tsinjo and Sportiello, Andrea},
  title =	{{The Complexity of the Approximate Multiple Pattern Matching Problem for Random Strings}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.3},
  URN =		{urn:nbn:de:0030-drops-120336},
  doi =		{10.4230/LIPIcs.AofA.2020.3},
  annote =	{Keywords: Average-case analysis of algorithms, String Pattern Matching, Computational Complexity bounds}
}
Document
Two Arithmetical Sources and Their Associated Tries

Authors: Valérie Berthé, Eda Cesaratto, Frédéric Paccaut, Pablo Rotondo, Martín D. Safe, and Brigitte Vallée

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
This article is devoted to the study of two arithmetical sources associated with classical partitions, that are both defined through the mediant of two fractions. The Stern-Brocot source is associated with the sequence of all the mediants, while the Sturm source only keeps mediants whose denominator is "not too large". Even though these sources are both of zero Shannon entropy, with very similar Renyi entropies, their probabilistic features yet appear to be quite different. We then study how they influence the behaviour of tries built on words they emit, and we notably focus on the trie depth. The paper deals with Analytic Combinatorics methods, and Dirichlet generating functions, that are usually used and studied in the case of good sources with positive entropy. To the best of our knowledge, the present study is the first one where these powerful methods are applied to a zero-entropy context. In our context, the generating function associated with each source is explicit and related to classical functions in Number Theory, as the ζ function, the double ζ function or the transfer operator associated with the Gauss map. We obtain precise asymptotic estimates for the mean value of the trie depth that prove moreover to be quite different for each source. Then, these sources provide explicit and natural instances which lead to two unusual and different trie behaviours.

Cite as

Valérie Berthé, Eda Cesaratto, Frédéric Paccaut, Pablo Rotondo, Martín D. Safe, and Brigitte Vallée. Two Arithmetical Sources and Their Associated Tries. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{berthe_et_al:LIPIcs.AofA.2020.4,
  author =	{Berth\'{e}, Val\'{e}rie and Cesaratto, Eda and Paccaut, Fr\'{e}d\'{e}ric and Rotondo, Pablo and Safe, Mart{\'\i}n D. and Vall\'{e}e, Brigitte},
  title =	{{Two Arithmetical Sources and Their Associated Tries}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.4},
  URN =		{urn:nbn:de:0030-drops-120345},
  doi =		{10.4230/LIPIcs.AofA.2020.4},
  annote =	{Keywords: Combinatorics of words, Information Theory, Probabilistic analysis, Analytic combinatorics, Dirichlet generating functions, Sources, Partitions, Trie structure, Continued fraction expansion, Farey map, Sturm words, Transfer operator}
}
Document
The k-Cut Model in Conditioned Galton-Watson Trees

Authors: Gabriel Berzunza, Xing Shi Cai, and Cecilia Holmgren

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
The k-cut number of rooted graphs was introduced by Cai et al. [Cai and Holmgren, 2019] as a generalization of the classical cutting model by Meir and Moon [Meir and Moon, 1970]. In this paper, we show that all moments of the k-cut number of conditioned Galton-Watson trees converge after proper rescaling, which implies convergence in distribution to the same limit law regardless of the offspring distribution of the trees. This extends the result of Janson [Janson, 2006].

Cite as

Gabriel Berzunza, Xing Shi Cai, and Cecilia Holmgren. The k-Cut Model in Conditioned Galton-Watson Trees. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 5:1-5:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{berzunza_et_al:LIPIcs.AofA.2020.5,
  author =	{Berzunza, Gabriel and Cai, Xing Shi and Holmgren, Cecilia},
  title =	{{The k-Cut Model in Conditioned Galton-Watson Trees}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{5:1--5:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.5},
  URN =		{urn:nbn:de:0030-drops-120352},
  doi =		{10.4230/LIPIcs.AofA.2020.5},
  annote =	{Keywords: k-cut, cutting, conditioned Galton-Watson trees}
}
Document
Largest Clusters for Supercritical Percolation on Split Trees

Authors: Gabriel Berzunza and Cecilia Holmgren

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
We consider the model of random trees introduced by Devroye [Devroye, 1999], the so-called random split trees. The model encompasses many important randomized algorithms and data structures. We then perform supercritical Bernoulli bond-percolation on those trees and obtain a precise weak limit theorem for the sizes of the largest clusters. The approach we develop may be useful for studying percolation on other classes of trees with logarithmic height, for instance, we have also studied the case of complete d-regular trees.

Cite as

Gabriel Berzunza and Cecilia Holmgren. Largest Clusters for Supercritical Percolation on Split Trees. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 6:1-6:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{berzunza_et_al:LIPIcs.AofA.2020.6,
  author =	{Berzunza, Gabriel and Holmgren, Cecilia},
  title =	{{Largest Clusters for Supercritical Percolation on Split Trees}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{6:1--6:10},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.6},
  URN =		{urn:nbn:de:0030-drops-120361},
  doi =		{10.4230/LIPIcs.AofA.2020.6},
  annote =	{Keywords: Split trees, random trees, supercritical bond-percolation, cluster size, Poisson measures}
}
Document
Scaling and Local Limits of Baxter Permutations Through Coalescent-Walk Processes

Authors: Jacopo Borga and Mickaël Maazoun

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
Baxter permutations, plane bipolar orientations, and a specific family of walks in the non-negative quadrant are well-known to be related to each other through several bijections. We introduce a further new family of discrete objects, called coalescent-walk processes, that are fundamental for our results. We relate these new objects with the other previously mentioned families introducing some new bijections. We prove joint Benjamini - Schramm convergence (both in the annealed and quenched sense) for uniform objects in the four families. Furthermore, we explicitly construct a new fractal random measure of the unit square, called the coalescent Baxter permuton and we show that it is the scaling limit (in the permuton sense) of uniform Baxter permutations. To prove the latter result, we study the scaling limit of the associated random coalescent-walk processes. We show that they converge in law to a continuous random coalescent-walk process encoded by a perturbed version of the Tanaka stochastic differential equation. This result has connections (to be explored in future projects) with the results of Gwynne, Holden, Sun (2016) on scaling limits (in the Peanosphere topology) of plane bipolar triangulations. We further prove some results that relate the limiting objects of the four families to each other, both in the local and scaling limit case.

Cite as

Jacopo Borga and Mickaël Maazoun. Scaling and Local Limits of Baxter Permutations Through Coalescent-Walk Processes. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{borga_et_al:LIPIcs.AofA.2020.7,
  author =	{Borga, Jacopo and Maazoun, Micka\"{e}l},
  title =	{{Scaling and Local Limits of Baxter Permutations Through Coalescent-Walk Processes}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.7},
  URN =		{urn:nbn:de:0030-drops-120370},
  doi =		{10.4230/LIPIcs.AofA.2020.7},
  annote =	{Keywords: Local and scaling limits, permutations, planar maps, random walks in cones}
}
Document
More Models of Walks Avoiding a Quadrant

Authors: Mireille Bousquet-Mélou and Michael Wallner

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
We continue the enumeration of plane lattice paths avoiding the negative quadrant initiated by the first author in [Bousquet-Mélou, 2016]. We solve in detail a new case, the king walks, where all 8 nearest neighbour steps are allowed. As in the two cases solved in [Bousquet-Mélou, 2016], the associated generating function is proved to differ from a simple, explicit D-finite series (related to the enumeration of walks confined to the first quadrant) by an algebraic one. The principle of the approach is the same as in [Bousquet-Mélou, 2016], but challenging theoretical and computational difficulties arise as we now handle algebraic series of larger degree. We also explain why we expect the observed algebraicity phenomenon to persist for 4 more models, for which the quadrant problem is solvable using the reflection principle.

Cite as

Mireille Bousquet-Mélou and Michael Wallner. More Models of Walks Avoiding a Quadrant. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bousquetmelou_et_al:LIPIcs.AofA.2020.8,
  author =	{Bousquet-M\'{e}lou, Mireille and Wallner, Michael},
  title =	{{More Models of Walks Avoiding a Quadrant}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{8:1--8:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.8},
  URN =		{urn:nbn:de:0030-drops-120383},
  doi =		{10.4230/LIPIcs.AofA.2020.8},
  annote =	{Keywords: Enumerative combinatorics, lattice paths, non-convex cones, algebraic series, D-finite series}
}
Document
Polyharmonic Functions And Random Processes in Cones

Authors: François Chapon, Éric Fusy, and Kilian Raschel

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
We investigate polyharmonic functions associated to Brownian motions and random walks in cones. These are functions which cancel some power of the usual Laplacian in the continuous setting and of the discrete Laplacian in the discrete setting. We show that polyharmonic functions naturally appear while considering asymptotic expansions of the heat kernel in the Brownian case and in lattice walk enumeration problems. We provide a method to construct general polyharmonic functions through Laplace transforms and generating functions in the continuous and discrete cases, respectively. This is done by using a functional equation approach.

Cite as

François Chapon, Éric Fusy, and Kilian Raschel. Polyharmonic Functions And Random Processes in Cones. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chapon_et_al:LIPIcs.AofA.2020.9,
  author =	{Chapon, Fran\c{c}ois and Fusy, \'{E}ric and Raschel, Kilian},
  title =	{{Polyharmonic Functions And Random Processes in Cones}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.9},
  URN =		{urn:nbn:de:0030-drops-120390},
  doi =		{10.4230/LIPIcs.AofA.2020.9},
  annote =	{Keywords: Brownian motion in cones, Heat kernel, Random walks in cones, Harmonic functions, Polyharmonic functions, Complete asymptotic expansions, Functional equations}
}
Document
Cut Vertices in Random Planar Maps

Authors: Michael Drmota, Marc Noy, and Benedikt Stufler

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
The main goal of this paper is to determine the asymptotic behavior of the number X_n of cut-vertices in random planar maps with n edges. It is shown that X_n/n → c in probability (for some explicit c>0). For so-called subcritial subclasses of planar maps like outerplanar maps we obtain a central limit theorem, too.

Cite as

Michael Drmota, Marc Noy, and Benedikt Stufler. Cut Vertices in Random Planar Maps. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{drmota_et_al:LIPIcs.AofA.2020.10,
  author =	{Drmota, Michael and Noy, Marc and Stufler, Benedikt},
  title =	{{Cut Vertices in Random Planar Maps}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.10},
  URN =		{urn:nbn:de:0030-drops-120403},
  doi =		{10.4230/LIPIcs.AofA.2020.10},
  annote =	{Keywords: random planar maps, cut vertices, generating functions, local graph limits}
}
Document
Asymptotics of Minimal Deterministic Finite Automata Recognizing a Finite Binary Language

Authors: Andrew Elvey Price, Wenjie Fang, and Michael Wallner

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
We show that the number of minimal deterministic finite automata with n+1 states recognizing a finite binary language grows asymptotically for n → ∞ like Θ(n! 8ⁿ e^{3 a₁ n^{1/3}} n^{7/8}), where a₁ ≈ -2.338 is the largest root of the Airy function. For this purpose, we use a new asymptotic enumeration method proposed by the same authors in a recent preprint (2019). We first derive a new two-parameter recurrence relation for the number of such automata up to a given size. Using this result, we prove by induction tight bounds that are sufficiently accurate for large n to determine the asymptotic form using adapted Netwon polygons.

Cite as

Andrew Elvey Price, Wenjie Fang, and Michael Wallner. Asymptotics of Minimal Deterministic Finite Automata Recognizing a Finite Binary Language. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 11:1-11:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{elveyprice_et_al:LIPIcs.AofA.2020.11,
  author =	{Elvey Price, Andrew and Fang, Wenjie and Wallner, Michael},
  title =	{{Asymptotics of Minimal Deterministic Finite Automata Recognizing a Finite Binary Language}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{11:1--11:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.11},
  URN =		{urn:nbn:de:0030-drops-120419},
  doi =		{10.4230/LIPIcs.AofA.2020.11},
  annote =	{Keywords: Airy function, asymptotics, directed acyclic graphs, Dyck paths, bijection, stretched exponential, compacted trees, minimal automata, finite languages}
}
Document
The First Bijective Proof of the Alternating Sign Matrix Theorem Theorem

Authors: Ilse Fischer and Matjaž Konvalinka

Published in: LIPIcs, Volume 159, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)


Abstract
Alternating sign matrices are known to be equinumerous with descending plane partitions, totally symmetric self-complementary plane partitions and alternating sign triangles, but a bijective proof for any of these equivalences has been elusive for almost 40 years. In this extended abstract, we provide a sketch of the first bijective proof of the enumeration formula for alternating sign matrices, and of the fact that alternating sign matrices are equinumerous with descending plane partitions. The bijections are based on the operator formula for the number of monotone triangles due to the first author. The starting point for these constructions were known "computational" proofs, but the combinatorial point of view led to several drastic modifications and simplifications. We also provide computer code where all of our constructions have been implemented.

Cite as

Ilse Fischer and Matjaž Konvalinka. The First Bijective Proof of the Alternating Sign Matrix Theorem Theorem. In 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 159, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.AofA.2020.12,
  author =	{Fischer, Ilse and Konvalinka, Matja\v{z}},
  title =	{{The First Bijective Proof of the Alternating Sign Matrix Theorem Theorem}},
  booktitle =	{31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020)},
  pages =	{12:1--12:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-147-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{159},
  editor =	{Drmota, Michael and Heuberger, Clemens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2020.12},
  URN =		{urn:nbn:de:0030-drops-120424},
  doi =		{10.4230/LIPIcs.AofA.2020.12},
  annote =	{Keywords: enumeration, bijective proof, alternating sign matrix, plane partition}
}
  • Refine by Author
  • 4 Heuberger, Clemens
  • 3 Drmota, Michael
  • 3 Szpankowski, Wojciech
  • 3 Wallner, Michael
  • 2 Banderier, Cyril
  • Show More...

  • Refine by Classification
  • 11 Mathematics of computing → Generating functions
  • 7 Mathematics of computing → Enumeration
  • 6 Mathematics of computing → Random graphs
  • 5 Theory of computation → Random walks and Markov chains
  • 3 Mathematics of computing → Probabilistic algorithms
  • Show More...

  • Refine by Keyword
  • 3 Lattice path
  • 2 algebraic function
  • 2 analytic combinatorics
  • 2 asymptotics
  • 2 context-free grammar
  • Show More...

  • Refine by Type
  • 29 document
  • 1 volume

  • Refine by Publication Year
  • 28 2020
  • 2 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail