4 Search Results for "Hoffmann, Henry"


Document
Monotone Arc Diagrams with Few Biarcs

Authors: Steven Chaplick, Henry Förster, Michael Hoffmann, and Michael Kaufmann

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We show that every planar graph has a monotone topological 2-page book embedding where at most (4n-10)/5 (of potentially 3n-6) edges cross the spine, and every edge crosses the spine at most once; such an edge is called a biarc. We can also guarantee that all edges that cross the spine cross it in the same direction (e.g., from bottom to top). For planar 3-trees we can further improve the bound to (3n-9)/4, and for so-called Kleetopes we obtain a bound of at most (n-8)/3 edges that cross the spine. The bound for Kleetopes is tight, even if the drawing is not required to be monotone. A Kleetope is a plane triangulation that is derived from another plane triangulation T by inserting a new vertex v_f into each face f of T and then connecting v_f to the three vertices of f.

Cite as

Steven Chaplick, Henry Förster, Michael Hoffmann, and Michael Kaufmann. Monotone Arc Diagrams with Few Biarcs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 11:1-11:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chaplick_et_al:LIPIcs.GD.2024.11,
  author =	{Chaplick, Steven and F\"{o}rster, Henry and Hoffmann, Michael and Kaufmann, Michael},
  title =	{{Monotone Arc Diagrams with Few Biarcs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{11:1--11:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.11},
  URN =		{urn:nbn:de:0030-drops-212955},
  doi =		{10.4230/LIPIcs.GD.2024.11},
  annote =	{Keywords: planar graph, topological book embedding, monotone drawing, linear layout}
}
Document
Anytime Weighted Model Counting with Approximation Guarantees for Probabilistic Inference

Authors: Alexandre Dubray, Pierre Schaus, and Siegfried Nijssen

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Weighted model counting (WMC) plays a central role in probabilistic reasoning. Given that this problem is #P-hard, harder instances can generally only be addressed using approximate techniques based on sampling, which provide statistical convergence guarantees: the longer a sampling process runs, the more accurate the WMC is likely to be. In this work, we propose a deterministic search-based approach that can also be stopped at any time and provides hard lower- and upper-bound guarantees on the true WMC. This approach uses a value heuristic that guides exploration first towards models with a high weight and leverages Limited Discrepancy Search to make the bounds converge faster. The validity, scalability, and convergence of our approach are tested and compared with state-of-the-art baseline methods on the problem of computing marginal probabilities in Bayesian networks and reliability estimation in probabilistic graphs.

Cite as

Alexandre Dubray, Pierre Schaus, and Siegfried Nijssen. Anytime Weighted Model Counting with Approximation Guarantees for Probabilistic Inference. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dubray_et_al:LIPIcs.CP.2024.10,
  author =	{Dubray, Alexandre and Schaus, Pierre and Nijssen, Siegfried},
  title =	{{Anytime Weighted Model Counting with Approximation Guarantees for Probabilistic Inference}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.10},
  URN =		{urn:nbn:de:0030-drops-206956},
  doi =		{10.4230/LIPIcs.CP.2024.10},
  annote =	{Keywords: Projected Weighted Model Counting, Limited Discrepancy Search, Approximate Method, Probabilistic Inference}
}
Document
Approximation Algorithms for Scheduling with Resource and Precedence Constraints

Authors: Gökalp Demirci, Henry Hoffmann, and David H. K. Kim

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
We study non-preemptive scheduling problems on identical parallel machines and uniformly related machines under both resource constraints and general precedence constraints between jobs. Our first result is an O(logn)-approximation algorithm for the objective of minimizing the makespan on parallel identical machines under resource and general precedence constraints. We then use this result as a subroutine to obtain an O(logn)-approximation algorithm for the more general objective of minimizing the total weighted completion time on parallel identical machines under both constraints. Finally, we present an O(logm logn)-approximation algorithm for scheduling under these constraints on uniformly related machines. We show that these results can all be generalized to include the case where each job has a release time. This is the first upper bound on the approximability of this class of scheduling problems where both resource and general precedence constraints must be satisfied simultaneously.

Cite as

Gökalp Demirci, Henry Hoffmann, and David H. K. Kim. Approximation Algorithms for Scheduling with Resource and Precedence Constraints. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 25:1-25:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{demirci_et_al:LIPIcs.STACS.2018.25,
  author =	{Demirci, G\"{o}kalp and Hoffmann, Henry and Kim, David H. K.},
  title =	{{Approximation Algorithms for Scheduling with Resource and Precedence Constraints}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{25:1--25:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.25},
  URN =		{urn:nbn:de:0030-drops-85319},
  doi =		{10.4230/LIPIcs.STACS.2018.25},
  annote =	{Keywords: scheduling, resource, precedence, weighted completion time}
}
Document
Self-Adaptive Video Encoder: Comparison of Multiple Adaptation Strategies Made Simple (Artifact)

Authors: Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry Hoffmann

Published in: DARTS, Volume 3, Issue 1, Special Issue of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2017)


Abstract
This paper presents an adaptive video encoder that can be used to compare the behavior of different adaptation strategies using multiple actuators to steer the encoder towards a global goal, composed of multiple conflicting objectives. A video camera produces frames that the encoder manipulates with the objective of matching some space requirement to fit a given communication channel. A second objective is to maintain a given similarity index between the manipulated frames and the original ones. To achieve the goal, the software can change three parameters: the quality of the encoding, the noise reduction filter radius and the sharpening filter radius. In most cases the objectives - small encoded size and high quality - conflict, since a larger frame would have a higher similarity index to its original counterpart. This makes the problem difficult from the control perspective and makes the case study appealing to compare different adaptation strategies.

Cite as

Martina Maggio, Alessandro Vittorio Papadopoulos, Antonio Filieri, and Henry Hoffmann. Self-Adaptive Video Encoder: Comparison of Multiple Adaptation Strategies Made Simple (Artifact). In Special Issue of the 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2017). Dagstuhl Artifacts Series (DARTS), Volume 3, Issue 1, pp. 2:1-2:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{maggio_et_al:DARTS.3.1.2,
  author =	{Maggio, Martina and Papadopoulos, Alessandro Vittorio and Filieri, Antonio and Hoffmann, Henry},
  title =	{{Self-Adaptive Video Encoder: Comparison of Multiple Adaptation Strategies Made Simple (Artifact)}},
  pages =	{2:1--2:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2017},
  volume =	{3},
  number =	{1},
  editor =	{Maggio, Martina and Papadopoulos, Alessandro Vittorio and Filieri, Antonio and Hoffmann, Henry},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.3.1.2},
  URN =		{urn:nbn:de:0030-drops-71408},
  doi =		{10.4230/DARTS.3.1.2},
  annote =	{Keywords: self-adaptive software, video encoding, comparison, control theory}
}
  • Refine by Author
  • 2 Hoffmann, Henry
  • 1 Chaplick, Steven
  • 1 Demirci, Gökalp
  • 1 Dubray, Alexandre
  • 1 Filieri, Antonio
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Approximate Method
  • 1 Limited Discrepancy Search
  • 1 Probabilistic Inference
  • 1 Projected Weighted Model Counting
  • 1 comparison
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2024
  • 1 2017
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail