8 Search Results for "Hou (Favonia), Kuen-Bang"


Document
The Directed Van Kampen Theorem in Lean

Authors: Henning Basold, Peter Bruin, and Dominique Lawson

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Directed topology augments the concept of a topological space with a notion of directed paths. This leads to a category of directed spaces, in which the morphisms are continuous maps respecting directed paths. Directed topology thereby enables an accurate representation of computation paths in concurrent systems that usually cannot be reversed. Even though ideas from algebraic topology have analogues in directed topology, the directedness drastically changes how spaces can be characterised. For instance, while an important homotopy invariant of a topological space is its fundamental groupoid, for directed spaces this has to be replaced by the fundamental category because directed paths are not necessarily reversible. In this paper, we present a Lean 4 formalisation of directed spaces and of a Van Kampen theorem for them, which allows the fundamental category of a directed space to be computed in terms of the fundamental categories of subspaces. Part of this formalisation is also a significant theory of directed spaces, directed homotopy theory and path coverings, which can serve as basis for future formalisations of directed topology. The formalisation in Lean can also be used in computer-assisted reasoning about the behaviour of concurrent systems that have been represented as directed spaces.

Cite as

Henning Basold, Peter Bruin, and Dominique Lawson. The Directed Van Kampen Theorem in Lean. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{basold_et_al:LIPIcs.ITP.2024.8,
  author =	{Basold, Henning and Bruin, Peter and Lawson, Dominique},
  title =	{{The Directed Van Kampen Theorem in Lean}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.8},
  URN =		{urn:nbn:de:0030-drops-207368},
  doi =		{10.4230/LIPIcs.ITP.2024.8},
  annote =	{Keywords: Lean, Directed Topology, Van Kampen Theorem, Directed Homotopy Theory, Formalised Mathematics}
}
Document
Classification of Covering Spaces and Canonical Change of Basepoint

Authors: Jelle Wemmenhove, Cosmin Manea, and Jim Portegies

Published in: LIPIcs, Volume 303, 29th International Conference on Types for Proofs and Programs (TYPES 2023)


Abstract
Using the language of homotopy type theory (HoTT), we 1) prove a synthetic version of the classification theorem for covering spaces, and 2) explore the existence of canonical change-of-basepoint isomorphisms between homotopy groups. There is some freedom in choosing how to translate concepts from classical algebraic topology into HoTT. The final translations we ended up with are easier to work with than the ones we started with. We discuss some earlier attempts to shed light on this translation process. The proofs are mechanized using the Coq proof assistant and closely follow classical treatments like those by Hatcher [Allen Hatcher, 2002].

Cite as

Jelle Wemmenhove, Cosmin Manea, and Jim Portegies. Classification of Covering Spaces and Canonical Change of Basepoint. In 29th International Conference on Types for Proofs and Programs (TYPES 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 303, pp. 1:1-1:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wemmenhove_et_al:LIPIcs.TYPES.2023.1,
  author =	{Wemmenhove, Jelle and Manea, Cosmin and Portegies, Jim},
  title =	{{Classification of Covering Spaces and Canonical Change of Basepoint}},
  booktitle =	{29th International Conference on Types for Proofs and Programs (TYPES 2023)},
  pages =	{1:1--1:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-332-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{303},
  editor =	{Kesner, Delia and Reyes, Eduardo Hermo and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2023.1},
  URN =		{urn:nbn:de:0030-drops-204795},
  doi =		{10.4230/LIPIcs.TYPES.2023.1},
  annote =	{Keywords: Synthetic Homotopy Theory, Homotopy Type Theory, Covering Spaces, Change-of-Basepoint Isomorphism}
}
Document
Internal Parametricity for Cubical Type Theory

Authors: Evan Cavallo and Robert Harper

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, and we give an account of the identity extension lemma for internal parametricity.

Cite as

Evan Cavallo and Robert Harper. Internal Parametricity for Cubical Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 13:1-13:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.13,
  author =	{Cavallo, Evan and Harper, Robert},
  title =	{{Internal Parametricity for Cubical Type Theory}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{13:1--13:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.13},
  URN =		{urn:nbn:de:0030-drops-116564},
  doi =		{10.4230/LIPIcs.CSL.2020.13},
  annote =	{Keywords: parametricity, cubical type theory, higher inductive types}
}
Document
Unifying Cubical Models of Univalent Type Theory

Authors: Evan Cavallo, Anders Mörtberg, and Andrew W Swan

Published in: LIPIcs, Volume 152, 28th EACSL Annual Conference on Computer Science Logic (CSL 2020)


Abstract
We present a new constructive model of univalent type theory based on cubical sets. Unlike prior work on cubical models, ours depends neither on diagonal cofibrations nor connections. This is made possible by weakening the notion of fibration from the cartesian cubical set model, so that it is not necessary to assume that the diagonal on the interval is a cofibration. We have formally verified in Agda that these fibrations are closed under the type formers of cubical type theory and that the model satisfies the univalence axiom. By applying the construction in the presence of diagonal cofibrations or connections and reversals, we recover the existing cartesian and De Morgan cubical set models as special cases. Generalizing earlier work of Sattler for cubical sets with connections, we also obtain a Quillen model structure.

Cite as

Evan Cavallo, Anders Mörtberg, and Andrew W Swan. Unifying Cubical Models of Univalent Type Theory. In 28th EACSL Annual Conference on Computer Science Logic (CSL 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 152, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cavallo_et_al:LIPIcs.CSL.2020.14,
  author =	{Cavallo, Evan and M\"{o}rtberg, Anders and Swan, Andrew W},
  title =	{{Unifying Cubical Models of Univalent Type Theory}},
  booktitle =	{28th EACSL Annual Conference on Computer Science Logic (CSL 2020)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-132-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{152},
  editor =	{Fern\'{a}ndez, Maribel and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2020.14},
  URN =		{urn:nbn:de:0030-drops-116578},
  doi =		{10.4230/LIPIcs.CSL.2020.14},
  annote =	{Keywords: Cubical Set Models, Cubical Type Theory, Homotopy Type Theory, Univalent Foundations}
}
Document
Cubical Syntax for Reflection-Free Extensional Equality

Authors: Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer

Published in: LIPIcs, Volume 131, 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)


Abstract
We contribute XTT, a cubical reconstruction of Observational Type Theory [Altenkirch et al., 2007] which extends Martin-Löf’s intensional type theory with a dependent equality type that enjoys function extensionality and a judgmental version of the unicity of identity proofs principle (UIP): any two elements of the same equality type are judgmentally equal. Moreover, we conjecture that the typing relation can be decided in a practical way. In this paper, we establish an algebraic canonicity theorem using a novel extension of the logical families or categorical gluing argument inspired by Coquand and Shulman [Coquand, 2018; Shulman, 2015]: every closed element of boolean type is derivably equal to either true or false.

Cite as

Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical Syntax for Reflection-Free Extensional Equality. In 4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 131, pp. 31:1-31:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sterling_et_al:LIPIcs.FSCD.2019.31,
  author =	{Sterling, Jonathan and Angiuli, Carlo and Gratzer, Daniel},
  title =	{{Cubical Syntax for Reflection-Free Extensional Equality}},
  booktitle =	{4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019)},
  pages =	{31:1--31:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-107-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{131},
  editor =	{Geuvers, Herman},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2019.31},
  URN =		{urn:nbn:de:0030-drops-105387},
  doi =		{10.4230/LIPIcs.FSCD.2019.31},
  annote =	{Keywords: Dependent type theory, extensional equality, cubical type theory, categorical gluing, canonicity}
}
Document
Covering Spaces in Homotopy Type Theory

Authors: Kuen-Bang Hou (Favonia) and Robert Harper

Published in: LIPIcs, Volume 97, 22nd International Conference on Types for Proofs and Programs (TYPES 2016)


Abstract
Broadly speaking, algebraic topology consists of associating algebraic structures to topological spaces that give information about their structure. An elementary, but fundamental, example is provided by the theory of covering spaces, which associate groups to covering spaces in such a way that the universal cover corresponds to the fundamental group of the space. One natural question to ask is whether these connections can be stated in homotopy type theory, a new area linking type theory to homotopy theory. In this paper, we give an affirmative answer with a surprisingly concise definition of covering spaces in type theory; we are able to prove various expected properties about the newly defined covering spaces, including the connections with fundamental groups. An additional merit is that our work has been fully mechanized in the proof assistant Agda.

Cite as

Kuen-Bang Hou (Favonia) and Robert Harper. Covering Spaces in Homotopy Type Theory. In 22nd International Conference on Types for Proofs and Programs (TYPES 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 97, pp. 11:1-11:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{hou(favonia)_et_al:LIPIcs.TYPES.2016.11,
  author =	{Hou (Favonia), Kuen-Bang and Harper, Robert},
  title =	{{Covering Spaces in Homotopy Type Theory}},
  booktitle =	{22nd International Conference on Types for Proofs and Programs (TYPES 2016)},
  pages =	{11:1--11:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-065-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{97},
  editor =	{Ghilezan, Silvia and Geuvers, Herman and Ivetic, Jelena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2016.11},
  URN =		{urn:nbn:de:0030-drops-98512},
  doi =		{10.4230/LIPIcs.TYPES.2016.11},
  annote =	{Keywords: homotopy type theory, covering space, fundamental group, mechanized reasoning}
}
Document
Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities

Authors: Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper

Published in: LIPIcs, Volume 119, 27th EACSL Annual Conference on Computer Science Logic (CSL 2018)


Abstract
We present a dependent type theory organized around a Cartesian notion of cubes (with faces, degeneracies, and diagonals), supporting both fibrant and non-fibrant types. The fibrant fragment validates Voevodsky's univalence axiom and includes a circle type, while the non-fibrant fragment includes exact (strict) equality types satisfying equality reflection. Our type theory is defined by a semantics in cubical partial equivalence relations, and is the first two-level type theory to satisfy the canonicity property: all closed terms of boolean type evaluate to either true or false.

Cite as

Carlo Angiuli, Kuen-Bang Hou (Favonia), and Robert Harper. Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities. In 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 119, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{angiuli_et_al:LIPIcs.CSL.2018.6,
  author =	{Angiuli, Carlo and Hou (Favonia), Kuen-Bang and Harper, Robert},
  title =	{{Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities}},
  booktitle =	{27th EACSL Annual Conference on Computer Science Logic (CSL 2018)},
  pages =	{6:1--6:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-088-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{119},
  editor =	{Ghica, Dan R. and Jung, Achim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2018.6},
  URN =		{urn:nbn:de:0030-drops-96734},
  doi =		{10.4230/LIPIcs.CSL.2018.6},
  annote =	{Keywords: Homotopy Type Theory, Two-Level Type Theory, Computational Type Theory, Cubical Sets}
}
Document
The Seifert-van Kampen Theorem in Homotopy Type Theory

Authors: Kuen-Bang Hou (Favonia) and Michael Shulman

Published in: LIPIcs, Volume 62, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016)


Abstract
Homotopy type theory is a recent research area connecting type theory with homotopy theory by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic analogues of homotopy-theoretic theorems, yielding "synthetic homotopy theory". Here we consider the Seifert-van Kampen theorem, which characterizes the loop structure of spaces obtained by gluing. This is useful in homotopy theory because many spaces are constructed by gluing, and the loop structure helps distinguish distinct spaces. The synthetic proof showcases many new characteristics of synthetic homotopy theory, such as the "encode-decode" method, enforced homotopy-invariance, and lack of underlying sets.

Cite as

Kuen-Bang Hou (Favonia) and Michael Shulman. The Seifert-van Kampen Theorem in Homotopy Type Theory. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{hou(favonia)_et_al:LIPIcs.CSL.2016.22,
  author =	{Hou (Favonia), Kuen-Bang and Shulman, Michael},
  title =	{{The Seifert-van Kampen Theorem in Homotopy Type Theory}},
  booktitle =	{25th EACSL Annual Conference on Computer Science Logic (CSL 2016)},
  pages =	{22:1--22:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-022-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{62},
  editor =	{Talbot, Jean-Marc and Regnier, Laurent},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2016.22},
  URN =		{urn:nbn:de:0030-drops-65626},
  doi =		{10.4230/LIPIcs.CSL.2016.22},
  annote =	{Keywords: homotopy type theory, fundamental group, homotopy pushout, mechanized reasoning}
}
  • Refine by Author
  • 3 Harper, Robert
  • 3 Hou (Favonia), Kuen-Bang
  • 2 Angiuli, Carlo
  • 2 Cavallo, Evan
  • 1 Basold, Henning
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 Homotopy Type Theory
  • 2 cubical type theory
  • 2 fundamental group
  • 2 homotopy type theory
  • 2 mechanized reasoning
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 2 2018
  • 2 2020
  • 2 2024
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail