Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)
Serge Gaspers and Jerry Zirui Li. Quantum Algorithms for Graph Coloring and Other Partitioning, Covering, and Packing Problems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 69:1-69:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)
@InProceedings{gaspers_et_al:LIPIcs.ICALP.2024.69, author = {Gaspers, Serge and Li, Jerry Zirui}, title = {{Quantum Algorithms for Graph Coloring and Other Partitioning, Covering, and Packing Problems}}, booktitle = {51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)}, pages = {69:1--69:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-322-5}, ISSN = {1868-8969}, year = {2024}, volume = {297}, editor = {Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.69}, URN = {urn:nbn:de:0030-drops-202124}, doi = {10.4230/LIPIcs.ICALP.2024.69}, annote = {Keywords: Graph algorithms, quantum algorithms, graph coloring, domatic number, set cover, set partition, set packing} }
Published in: LIPIcs, Volume 197, 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)
Andris Ambainis, Kaspars Balodis, and Jānis Iraids. A Note About Claw Function with a Small Range. In 16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 197, pp. 6:1-6:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{ambainis_et_al:LIPIcs.TQC.2021.6, author = {Ambainis, Andris and Balodis, Kaspars and Iraids, J\={a}nis}, title = {{A Note About Claw Function with a Small Range}}, booktitle = {16th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2021)}, pages = {6:1--6:5}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-198-6}, ISSN = {1868-8969}, year = {2021}, volume = {197}, editor = {Hsieh, Min-Hsiu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2021.6}, URN = {urn:nbn:de:0030-drops-140013}, doi = {10.4230/LIPIcs.TQC.2021.6}, annote = {Keywords: collision, claw, quantum query complexity} }
Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)
Andris Ambainis, Kaspars Balodis, Jānis Iraids, Kamil Khadiev, Vladislavs Kļevickis, Krišjānis Prūsis, Yixin Shen, Juris Smotrovs, and Jevgēnijs Vihrovs. Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)
@InProceedings{ambainis_et_al:LIPIcs.MFCS.2020.8, author = {Ambainis, Andris and Balodis, Kaspars and Iraids, J\={a}nis and Khadiev, Kamil and K\c{l}evickis, Vladislavs and Pr\={u}sis, Kri\v{s}j\={a}nis and Shen, Yixin and Smotrovs, Juris and Vihrovs, Jevg\={e}nijs}, title = {{Quantum Lower and Upper Bounds for 2D-Grid and Dyck Language}}, booktitle = {45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)}, pages = {8:1--8:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-159-7}, ISSN = {1868-8969}, year = {2020}, volume = {170}, editor = {Esparza, Javier and Kr\'{a}l', Daniel}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.8}, URN = {urn:nbn:de:0030-drops-126774}, doi = {10.4230/LIPIcs.MFCS.2020.8}, annote = {Keywords: Quantum query complexity, Quantum algorithms, Dyck language, Grid path} }
Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)
Scott Aaronson, Andris Ambainis, Janis Iraids, Martins Kokainis, and Juris Smotrovs. Polynomials, Quantum Query Complexity, and Grothendieck's Inequality. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)
@InProceedings{aaronson_et_al:LIPIcs.CCC.2016.25, author = {Aaronson, Scott and Ambainis, Andris and Iraids, Janis and Kokainis, Martins and Smotrovs, Juris}, title = {{Polynomials, Quantum Query Complexity, and Grothendieck's Inequality}}, booktitle = {31st Conference on Computational Complexity (CCC 2016)}, pages = {25:1--25:19}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-008-8}, ISSN = {1868-8969}, year = {2016}, volume = {50}, editor = {Raz, Ran}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.25}, URN = {urn:nbn:de:0030-drops-58394}, doi = {10.4230/LIPIcs.CCC.2016.25}, annote = {Keywords: quantum algorithms, Boolean functions, approximation by polynomials, Grothendieck's inequality} }
Published in: LIPIcs, Volume 22, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)
Andris Ambainis and Janis Iraids. Provable Advantage for Quantum Strategies in Random Symmetric XOR Games. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 146-156, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)
@InProceedings{ambainis_et_al:LIPIcs.TQC.2013.146, author = {Ambainis, Andris and Iraids, Janis}, title = {{Provable Advantage for Quantum Strategies in Random Symmetric XOR Games}}, booktitle = {8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)}, pages = {146--156}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-55-2}, ISSN = {1868-8969}, year = {2013}, volume = {22}, editor = {Severini, Simone and Brandao, Fernando}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2013.146}, URN = {urn:nbn:de:0030-drops-43156}, doi = {10.4230/LIPIcs.TQC.2013.146}, annote = {Keywords: Random Symmetric XOR games, Entanglement} }
Published in: LIPIcs, Volume 22, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)
Andris Ambainis, Janis Iraids, and Juris Smotrovs. Exact Quantum Query Complexity of EXACT and THRESHOLD. In 8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 22, pp. 263-269, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)
@InProceedings{ambainis_et_al:LIPIcs.TQC.2013.263, author = {Ambainis, Andris and Iraids, Janis and Smotrovs, Juris}, title = {{Exact Quantum Query Complexity of EXACT and THRESHOLD}}, booktitle = {8th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2013)}, pages = {263--269}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-55-2}, ISSN = {1868-8969}, year = {2013}, volume = {22}, editor = {Severini, Simone and Brandao, Fernando}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2013.263}, URN = {urn:nbn:de:0030-drops-43261}, doi = {10.4230/LIPIcs.TQC.2013.263}, annote = {Keywords: Quantum query algorithms, Complexity of Boolean functions} }