6 Search Results for "Jeronimo, Fernando Granha"


Document
Quantum Merlin-Arthur and Proofs Without Relative Phase

Authors: Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study a variant of QMA where quantum proofs have no relative phase (i.e. non-negative amplitudes, up to a global phase). If only completeness is modified, this class is equal to QMA [Grilo et al., 2014]; but if both completeness and soundness are modified, the class (named QMA+ by Jeronimo and Wu [Jeronimo and Wu, 2023]) can be much more powerful. We show that QMA+ with some constant gap is equal to NEXP, yet QMA+ with some other constant gap is equal to QMA. One interpretation is that Merlin’s ability to "deceive" originates from relative phase at least as much as from entanglement, since QMA(2) ⊆ NEXP.

Cite as

Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. Quantum Merlin-Arthur and Proofs Without Relative Phase. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bassirian_et_al:LIPIcs.ITCS.2024.9,
  author =	{Bassirian, Roozbeh and Fefferman, Bill and Marwaha, Kunal},
  title =	{{Quantum Merlin-Arthur and Proofs Without Relative Phase}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.9},
  URN =		{urn:nbn:de:0030-drops-195370},
  doi =		{10.4230/LIPIcs.ITCS.2024.9},
  annote =	{Keywords: quantum complexity, QMA(2), PCPs}
}
Document
RANDOM
Fast Decoding of Explicit Almost Optimal ε-Balanced q-Ary Codes And Fast Approximation of Expanding k-CSPs

Authors: Fernando Granha Jeronimo

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Good codes over an alphabet of constant size q can approach but not surpass distance 1-1/q. This makes the use of q-ary codes a necessity in some applications, and much work has been devoted to the case of constant alphabet q. In the large distance regime, namely, distance 1-1/q-ε for small ε > 0, the Gilbert-Varshamov (GV) bound asserts that rate Ω_q(ε²) is achievable whereas the q-ary MRRW bound gives a rate upper bound of O_q(ε²log(1/ε)). In this sense, the GV bound is almost optimal in this regime. Prior to this work there was no known explicit and efficiently decodable q-ary codes near the GV bound, in this large distance regime, for any constant q ≥ 3. We design an Õ_{ε,q}(N) time decoder for explicit (expander based) families of linear codes C_{N,q,ε} ⊆ F_q^N of distance (1-1/q)(1-ε) and rate Ω_q(ε^{2+o(1)}), for any desired ε > 0 and any constant prime q, namely, almost optimal in this regime. These codes are ε-balanced,i.e., for every non-zero codeword, the frequency of each symbol lies in the interval [1/q - ε, 1/q + ε]. A key ingredient of the q-ary decoder is a new near-linear time approximation algorithm for linear equations (k-LIN) over ℤ_q on expanding hypergraphs, in particular, those naturally arising in the decoding of these codes. We also investigate k-CSPs on expanding hypergraphs in more generality. We show that special trade-offs available for k-LIN over ℤ_q hold for linear equations over a finite group. To handle general finite groups, we design a new matrix version of weak regularity for expanding hypergraphs. We also obtain a near-linear time approximation algorithm for general expanding k-CSPs over q-ary alphabet. This later algorithm runs in time Õ_{k,q}(m + n), where m is the number of constraints and n is the number of variables. This improves the previous best running time of O(n^{Θ_{k,q}(1)}) by a Sum-of-Squares based algorithm of [AJT, 2019] (in the expanding regular case). We obtain our results by generalizing the framework of [JST, 2021] based on weak regularity decomposition for expanding hypergraphs. This framework was originally designed for binary k-XOR with the goal of providing near-linear time decoder for explicit binary codes, near the GV bound, from the breakthrough work of Ta-Shma [STOC, 2017]. The explicit families of codes over prime F_q are based on suitable instatiations of the Jalan-Moshkovitz (Abelian) generalization of Ta-Shma’s distance amplification procedure.

Cite as

Fernando Granha Jeronimo. Fast Decoding of Explicit Almost Optimal ε-Balanced q-Ary Codes And Fast Approximation of Expanding k-CSPs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 60:1-60:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jeronimo:LIPIcs.APPROX/RANDOM.2023.60,
  author =	{Jeronimo, Fernando Granha},
  title =	{{Fast Decoding of Explicit Almost Optimal \epsilon-Balanced q-Ary Codes And Fast Approximation of Expanding k-CSPs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{60:1--60:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.60},
  URN =		{urn:nbn:de:0030-drops-188858},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.60},
  annote =	{Keywords: Decoding, Approximation, GV bound, CSPs, HDXs, Regularity}
}
Document
Exact Completeness of LP Hierarchies for Linear Codes

Authors: Leonardo Nagami Coregliano, Fernando Granha Jeronimo, and Chris Jones

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
Determining the maximum size A₂(n,d) of a binary code of blocklength n and distance d remains an elusive open question even when restricted to the important class of linear codes. Recently, two linear programming hierarchies extending Delsarte’s LP were independently proposed to upper bound A₂^{Lin}(n,d) (the analogue of A₂(n,d) for linear codes). One of these hierarchies, by the authors, was shown to be approximately complete in the sense that the hierarchy converges to A₂^{Lin}(n,d) as the level grows beyond n². Despite some structural similarities, not even approximate completeness was known for the other hierarchy by Loyfer and Linial. In this work, we prove that both hierarchies recover the exact value of A₂^{Lin}(n,d) at level n. We also prove that at this level the polytope of Loyfer and Linial is integral. Even though these hierarchies seem less powerful than general hierarchies such as Sum-of-Squares, we show that they have enough structure to yield exact completeness via pseudoprobabilities.

Cite as

Leonardo Nagami Coregliano, Fernando Granha Jeronimo, and Chris Jones. Exact Completeness of LP Hierarchies for Linear Codes. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 40:1-40:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{coregliano_et_al:LIPIcs.ITCS.2023.40,
  author =	{Coregliano, Leonardo Nagami and Jeronimo, Fernando Granha and Jones, Chris},
  title =	{{Exact Completeness of LP Hierarchies for Linear Codes}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{40:1--40:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.40},
  URN =		{urn:nbn:de:0030-drops-175433},
  doi =		{10.4230/LIPIcs.ITCS.2023.40},
  annote =	{Keywords: LP bound, linear codes, Delsarte’s LP, combinatorial polytopes, pseudoexpectation}
}
Document
A Complete Linear Programming Hierarchy for Linear Codes

Authors: Leonardo Nagami Coregliano, Fernando Granha Jeronimo, and Chris Jones

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
A longstanding open problem in coding theory is to determine the best (asymptotic) rate R₂(δ) of binary codes with minimum constant (relative) distance δ. An existential lower bound was given by Gilbert and Varshamov in the 1950s. On the impossibility side, in the 1970s McEliece, Rodemich, Rumsey and Welch (MRRW) proved an upper bound by analyzing Delsarte’s linear programs. To date these results remain the best known lower and upper bounds on R₂(δ) with no improvement even for the important class of linear codes. Asymptotically, these bounds differ by an exponential factor in the blocklength. In this work, we introduce a new hierarchy of linear programs (LPs) that converges to the true size A^{Lin}₂(n,d) of an optimum linear binary code (in fact, over any finite field) of a given blocklength n and distance d. This hierarchy has several notable features: 1) It is a natural generalization of the Delsarte LPs used in the first MRRW bound. 2) It is a hierarchy of linear programs rather than semi-definite programs potentially making it more amenable to theoretical analysis. 3) It is complete in the sense that the optimum code size can be retrieved from level O(n²). 4) It provides an answer in the form of a hierarchy (in larger dimensional spaces) to the question of how to cut Delsarte’s LP polytopes to approximate the true size of linear codes. We obtain our hierarchy by generalizing the Krawtchouk polynomials and MacWilliams inequalities to a suitable "higher-order" version taking into account interactions of 𝓁 words. Our method also generalizes to translation schemes under mild assumptions.

Cite as

Leonardo Nagami Coregliano, Fernando Granha Jeronimo, and Chris Jones. A Complete Linear Programming Hierarchy for Linear Codes. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 51:1-51:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{coregliano_et_al:LIPIcs.ITCS.2022.51,
  author =	{Coregliano, Leonardo Nagami and Jeronimo, Fernando Granha and Jones, Chris},
  title =	{{A Complete Linear Programming Hierarchy for Linear Codes}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{51:1--51:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.51},
  URN =		{urn:nbn:de:0030-drops-156474},
  doi =		{10.4230/LIPIcs.ITCS.2022.51},
  annote =	{Keywords: Coding theory, code bounds, convex programming, linear programming hierarchy}
}
Document
Explicit Abelian Lifts and Quantum LDPC Codes

Authors: Fernando Granha Jeronimo, Tushant Mittal, Ryan O'Donnell, Pedro Paredes, and Madhur Tulsiani

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
For an abelian group H acting on the set [𝓁], an (H,𝓁)-lift of a graph G₀ is a graph obtained by replacing each vertex by 𝓁 copies, and each edge by a matching corresponding to the action of an element of H. Expanding graphs obtained via abelian lifts, form a key ingredient in the recent breakthrough constructions of quantum LDPC codes, (implicitly) in the fiber bundle codes by Hastings, Haah and O'Donnell [STOC 2021] achieving distance Ω̃(N^{3/5}), and in those by Panteleev and Kalachev [IEEE Trans. Inf. Theory 2021] of distance Ω(N/log(N)). However, both these constructions are non-explicit. In particular, the latter relies on a randomized construction of expander graphs via abelian lifts by Agarwal et al. [SIAM J. Discrete Math 2019]. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group H ⩽ Sym(𝓁), constant degree d ≥ 3 and ε > 0, we construct explicit d-regular expander graphs G obtained from an (H,𝓁)-lift of a (suitable) base n-vertex expander G₀ with the following parameters: ii) λ(G) ≤ 2√{d-1} + ε, for any lift size 𝓁 ≤ 2^{n^{δ}} where δ = δ(d,ε), iii) λ(G) ≤ ε ⋅ d, for any lift size 𝓁 ≤ 2^{n^{δ₀}} for a fixed δ₀ > 0, when d ≥ d₀(ε), or iv) λ(G) ≤ Õ(√d), for lift size "exactly" 𝓁 = 2^{Θ(n)}. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items (i) and (ii) above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for 2-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing" depth-first search traversals. Result (iii) is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion.

Cite as

Fernando Granha Jeronimo, Tushant Mittal, Ryan O'Donnell, Pedro Paredes, and Madhur Tulsiani. Explicit Abelian Lifts and Quantum LDPC Codes. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 88:1-88:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jeronimo_et_al:LIPIcs.ITCS.2022.88,
  author =	{Jeronimo, Fernando Granha and Mittal, Tushant and O'Donnell, Ryan and Paredes, Pedro and Tulsiani, Madhur},
  title =	{{Explicit Abelian Lifts and Quantum LDPC Codes}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{88:1--88:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.88},
  URN =		{urn:nbn:de:0030-drops-156846},
  doi =		{10.4230/LIPIcs.ITCS.2022.88},
  annote =	{Keywords: Graph lifts, expander graphs, quasi-cyclic LDPC codes, quantum LDPC codes}
}
Document
Almost-Orthogonal Bases for Inner Product Polynomials

Authors: Chris Jones and Aaron Potechin

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
In this paper, we consider low-degree polynomials of inner products between a collection of random vectors. We give an almost orthogonal basis for this vector space of polynomials when the random vectors are Gaussian, spherical, or Boolean. In all three cases, our basis admits an interesting combinatorial description based on the topology of the underlying graph of inner products. We also analyze the expected value of the product of two polynomials in our basis. In all three cases, we show that this expected value can be expressed in terms of collections of matchings on the underlying graph of inner products. In the Gaussian and Boolean cases, we show that this expected value is always non-negative. In the spherical case, we show that this expected value can be negative but we conjecture that if the underlying graph of inner products is planar then this expected value will always be non-negative.

Cite as

Chris Jones and Aaron Potechin. Almost-Orthogonal Bases for Inner Product Polynomials. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 89:1-89:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{jones_et_al:LIPIcs.ITCS.2022.89,
  author =	{Jones, Chris and Potechin, Aaron},
  title =	{{Almost-Orthogonal Bases for Inner Product Polynomials}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{89:1--89:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.89},
  URN =		{urn:nbn:de:0030-drops-156853},
  doi =		{10.4230/LIPIcs.ITCS.2022.89},
  annote =	{Keywords: Orthogonal polynomials, Fourier analysis, combinatorics}
}
  • Refine by Author
  • 4 Jeronimo, Fernando Granha
  • 3 Jones, Chris
  • 2 Coregliano, Leonardo Nagami
  • 1 Bassirian, Roozbeh
  • 1 Fefferman, Bill
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Expander graphs and randomness extractors
  • 1 Mathematics of computing → Coding theory
  • 1 Mathematics of computing → Combinatorial optimization
  • 1 Theory of computation
  • 1 Theory of computation → Error-correcting codes
  • Show More...

  • Refine by Keyword
  • 1 Approximation
  • 1 CSPs
  • 1 Coding theory
  • 1 Decoding
  • 1 Delsarte’s LP
  • Show More...

  • Refine by Type
  • 6 document

  • Refine by Publication Year
  • 3 2022
  • 2 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail