13 Search Results for "Jukna, Stasys"


Document
RANDOM
Towards Simpler Sorting Networks and Monotone Circuits for Majority

Authors: Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and Vladimir Podolskii

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
In this paper, we study the problem of computing the majority function by low-depth monotone circuits and a related problem of constructing low-depth sorting networks. We consider both the classical setting with elementary operations of arity 2 and the generalized setting with operations of arity k, where k is a parameter. For both problems and both settings, there are various constructions known, the minimal known depth being logarithmic. However, there is currently no known efficient deterministic construction that simultaneously achieves sub-log-squared depth, simplicity, and has a potential to be used in practice. In this paper we make progress towards resolution of this problem. For computing majority by standard monotone circuits (gates of arity 2) we provide an explicit monotone circuit of depth O(log₂^{5/3} n). The construction is a combination of several known and not too complicated ideas. Essentially, for this result we gradually derandomize the construction of Valiant (1984). As one of the intermediate steps in our result we need an efficient construction of a sorting network with gates of arity k for arbitrary fixed k. For this we provide a new sorting network architecture inspired by representation of inputs as a high-dimensional cube. As a result we obtain a simple construction that improves previous upper bound of 4 log_k² n to 2 log_k² n. We prove the similar bound for the depth of the circuit computing majority of n bits consisting of gates computing majority of k bits. Note, that for both problems there is an explicit construction of depth O(log_k n) known, but the construction is complicated and the constant hidden in O-notation is huge.

Cite as

Natalia Dobrokhotova-Maikova, Alexander Kozachinskiy, and Vladimir Podolskii. Towards Simpler Sorting Networks and Monotone Circuits for Majority. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 50:1-50:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dobrokhotovamaikova_et_al:LIPIcs.APPROX/RANDOM.2024.50,
  author =	{Dobrokhotova-Maikova, Natalia and Kozachinskiy, Alexander and Podolskii, Vladimir},
  title =	{{Towards Simpler Sorting Networks and Monotone Circuits for Majority}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{50:1--50:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.50},
  URN =		{urn:nbn:de:0030-drops-210436},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.50},
  annote =	{Keywords: Sorting networks, constant depth, lower bounds, threshold circuits}
}
Document
Query Maintenance Under Batch Changes with Small-Depth Circuits

Authors: Samir Datta, Asif Khan, Anish Mukherjee, Felix Tschirbs, Nils Vortmeier, and Thomas Zeume

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Which dynamic queries can be maintained efficiently? For constant-size changes, it is known that constant-depth circuits or, equivalently, first-order updates suffice for maintaining many important queries, among them reachability, tree isomorphism, and the word problem for context-free languages. In other words, these queries are in the dynamic complexity class DynFO. We show that most of the existing results for constant-size changes can be recovered for batch changes of polylogarithmic size if one allows circuits of depth 𝒪(log log n) or, equivalently, first-order updates that are iterated 𝒪(log log n) times.

Cite as

Samir Datta, Asif Khan, Anish Mukherjee, Felix Tschirbs, Nils Vortmeier, and Thomas Zeume. Query Maintenance Under Batch Changes with Small-Depth Circuits. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 46:1-46:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{datta_et_al:LIPIcs.MFCS.2024.46,
  author =	{Datta, Samir and Khan, Asif and Mukherjee, Anish and Tschirbs, Felix and Vortmeier, Nils and Zeume, Thomas},
  title =	{{Query Maintenance Under Batch Changes with Small-Depth Circuits}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{46:1--46:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.46},
  URN =		{urn:nbn:de:0030-drops-206027},
  doi =		{10.4230/LIPIcs.MFCS.2024.46},
  annote =	{Keywords: Dynamic complexity theory, parallel computation, dynamic algorithms}
}
Document
The Relative Strength of #SAT Proof Systems

Authors: Olaf Beyersdorff, Johannes K. Fichte, Markus Hecher, Tim Hoffmann, and Kaspar Kasche

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
The propositional model counting problem #SAT asks to compute the number of satisfying assignments for a given propositional formula. Recently, three #SAT proof systems kcps (knowledge compilation proof system), MICE (model counting induction by claim extension), and CPOG (certified partitioned-operation graphs) have been introduced with the aim to model #SAT solving and enable proof logging for solvers. Prior to this paper, the relations between these proof systems have been unclear and very few proof complexity results are known. We completely determine the simulation order of the three systems, establishing that CPOG simulates both MICE and kcps, while MICE and kcps are exponentially incomparable. This implies that CPOG is strictly stronger than the other two systems.

Cite as

Olaf Beyersdorff, Johannes K. Fichte, Markus Hecher, Tim Hoffmann, and Kaspar Kasche. The Relative Strength of #SAT Proof Systems. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beyersdorff_et_al:LIPIcs.SAT.2024.5,
  author =	{Beyersdorff, Olaf and Fichte, Johannes K. and Hecher, Markus and Hoffmann, Tim and Kasche, Kaspar},
  title =	{{The Relative Strength of #SAT Proof Systems}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.5},
  URN =		{urn:nbn:de:0030-drops-205276},
  doi =		{10.4230/LIPIcs.SAT.2024.5},
  annote =	{Keywords: Model Counting, #SAT, Proof Complexity, Proof Systems, Lower Bounds, Knowledge Compilation}
}
Document
Secure Multiparty Computation of Symmetric Functions with Polylogarithmic Bottleneck Complexity and Correlated Randomness

Authors: Reo Eriguchi

Published in: LIPIcs, Volume 304, 5th Conference on Information-Theoretic Cryptography (ITC 2024)


Abstract
Bottleneck complexity is an efficiency measure of secure multiparty computation (MPC) protocols introduced to achieve load-balancing in large-scale networks, which is defined as the maximum communication complexity required by any one player within the protocol execution. Towards the goal of achieving low bottleneck complexity, prior works proposed MPC protocols for computing symmetric functions in the correlated randomness model, where players are given input-independent correlated randomness in advance. However, the previous protocols with polylogarithmic bottleneck complexity in the number n of players require a large amount of correlated randomness that is linear in n, which limits the per-party efficiency as receiving and storing correlated randomness are the bottleneck for efficiency. In this work, we present for the first time MPC protocols for symmetric functions such that bottleneck complexity and the amount of correlated randomness are both polylogarithmic in n, assuming semi-honest adversaries colluding with at most n-o(n) players. Furthermore, one of our protocols is even computationally efficient in that each player performs only polylog(n) arithmetic operations while the computational complexity of the previous protocols is O(n). Technically, our efficiency improvements come from novel protocols based on ramp secret sharing to realize basic functionalities with low bottleneck complexity, which we believe may be of interest beyond their applications to secure computation of symmetric functions.

Cite as

Reo Eriguchi. Secure Multiparty Computation of Symmetric Functions with Polylogarithmic Bottleneck Complexity and Correlated Randomness. In 5th Conference on Information-Theoretic Cryptography (ITC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 304, pp. 10:1-10:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{eriguchi:LIPIcs.ITC.2024.10,
  author =	{Eriguchi, Reo},
  title =	{{Secure Multiparty Computation of Symmetric Functions with Polylogarithmic Bottleneck Complexity and Correlated Randomness}},
  booktitle =	{5th Conference on Information-Theoretic Cryptography (ITC 2024)},
  pages =	{10:1--10:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-333-1},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{304},
  editor =	{Aggarwal, Divesh},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2024.10},
  URN =		{urn:nbn:de:0030-drops-205182},
  doi =		{10.4230/LIPIcs.ITC.2024.10},
  annote =	{Keywords: Secure multiparty computation, Bottleneck complexity, Secret sharing}
}
Document
Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs

Authors: Xin Li and Yan Zhong

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Affine extractors give some of the best-known lower bounds for various computational models, such as AC⁰ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudlák, and Talebanfard (CCC' 22) introduced a stronger version of affine extractors known as directional affine extractors, together with a generalization of ROBPs where each node can make linear queries, and showed that the former implies strong lower bound for a certain type of the latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case complexity 2^{n/3-o(n)} against SROLBPs with exponentially small correlation. A follow-up work by Chattopadhyay and Liao (CCC' 23) improves the hardness to 2^{n-o(n)} at the price of increasing the correlation to polynomially large, via a new connection to sumset extractors introduced by Chattopadhyay and Li (STOC' 16) and explicit constructions of such extractors by Chattopadhyay and Liao (STOC' 22). Both works left open the questions of better constructions of directional affine extractors and improved average-case complexity against SROLBPs in the regime of small correlation. This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and ROBPs. Our main results include: - An explicit construction of directional affine extractors with k = o(n) and exponentially small error, which gives average-case complexity 2^{n-o(n)} against SROLBPs with exponentially small correlation, thus answering the two open questions raised in previous works. - An explicit function in AC⁰ that gives average-case complexity 2^{(1-δ)n} against ROBPs with negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is known, and the best size lower bound for any function in AC⁰ against ROBPs is 2^Ω(n). One of the key ingredients in our constructions is a new linear somewhere condenser for affine sources, which is based on dimension expanders. The condenser also leads to an unconditional improvement of the entropy requirement of explicit affine extractors with negligible error. We further show that the condenser also works for general weak random sources, under the Polynomial Freiman-Ruzsa Theorem in 𝖥₂ⁿ, recently proved by Gowers, Green, Manners, and Tao (arXiv' 23).

Cite as

Xin Li and Yan Zhong. Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.CCC.2024.10,
  author =	{Li, Xin and Zhong, Yan},
  title =	{{Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.10},
  URN =		{urn:nbn:de:0030-drops-204060},
  doi =		{10.4230/LIPIcs.CCC.2024.10},
  annote =	{Keywords: Randomness Extractors, Affine, Read-once Linear Branching Programs, Low-degree polynomials, AC⁰ circuits}
}
Document
Local Enumeration and Majority Lower Bounds

Authors: Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art Σ^k_3-circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm of Paturi, Pudlák, Saks, and Zane (J. ACM'05) are based on the same combinatorial theorem regarding k-CNFs. In this paper we define a problem which reveals new interactions between the two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms: - Depth-3 circuits: Any Σ^k_3 circuit computing the Majority function has size at least binom(n,n/2)/b(n, k, n/2). - k-SAT: There exists an algorithm solving k-SAT in time O(∑_{t=1}^{n/2}b(n, k, t)). A simple construction shows that b(n, k, n/2) ≥ 2^{(1 - O(log(k)/k))n}. Thus, matching upper bounds for b(n, k, n/2) would imply a Σ^k_3-circuit lower bound of 2^Ω(log(k)n/k) and a k-SAT upper bound of 2^{(1 - Ω(log(k)/k))n}. The former yields an unrestricted depth-3 lower bound of 2^ω(√n) solving a long standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis. In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of the problem, i.e., Enum(3, n/2). We show that the expected running time of our algorithm is 1.598ⁿ, substantially improving on the trivial bound of 3^{n/2} ≃ 1.732ⁿ. This already improves Σ^3_3 lower bounds for Majority function to 1.251ⁿ. The previous bound was 1.154ⁿ which follows from the work of Håstad, Jukna, and Pudlák (Comput. Complex.'95). By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

Cite as

Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and Navid Talebanfard. Local Enumeration and Majority Lower Bounds. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gurumukhani_et_al:LIPIcs.CCC.2024.17,
  author =	{Gurumukhani, Mohit and Paturi, Ramamohan and Pudl\'{a}k, Pavel and Saks, Michael and Talebanfard, Navid},
  title =	{{Local Enumeration and Majority Lower Bounds}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.17},
  URN =		{urn:nbn:de:0030-drops-204136},
  doi =		{10.4230/LIPIcs.CCC.2024.17},
  annote =	{Keywords: Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function}
}
Document
Track A: Algorithms, Complexity and Games
Exponential Lower Bounds via Exponential Sums

Authors: Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Valiant’s famous VP vs. VNP conjecture states that the symbolic permanent polynomial does not have polynomial-size algebraic circuits. However, the best upper bound on the size of the circuits computing the permanent is exponential. Informally, VNP is an exponential sum of VP-circuits. In this paper we study whether, in general, exponential sums (of algebraic circuits) require exponential-size algebraic circuits. We show that the famous Shub-Smale τ-conjecture indeed implies such an exponential lower bound for an exponential sum. Our main tools come from parameterized complexity. Along the way, we also prove an exponential fpt (fixed-parameter tractable) lower bound for the parameterized algebraic complexity class VW⁰_{nb}[𝖯], assuming the same conjecture. VW⁰_{nb}[𝖯] can be thought of as the weighted sums of (unbounded-degree) circuits, where only ± 1 constants are cost-free. To the best of our knowledge, this is the first time the Shub-Smale τ-conjecture has been applied to prove explicit exponential lower bounds. Furthermore, we prove that when this class is fpt, then a variant of the counting hierarchy, namely the linear counting hierarchy collapses. Moreover, if a certain type of parameterized exponential sums is fpt, then integers, as well as polynomials with coefficients being definable in the linear counting hierarchy have subpolynomial τ-complexity. Finally, we characterize a related class VW[𝖥], in terms of permanents, where we consider an exponential sum of algebraic formulas instead of circuits. We show that when we sum over cycle covers that have one long cycle and all other cycles have constant length, then the resulting family of polynomials is complete for VW[𝖥] on certain types of graphs.

Cite as

Somnath Bhattacharjee, Markus Bläser, Pranjal Dutta, and Saswata Mukherjee. Exponential Lower Bounds via Exponential Sums. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharjee_et_al:LIPIcs.ICALP.2024.24,
  author =	{Bhattacharjee, Somnath and Bl\"{a}ser, Markus and Dutta, Pranjal and Mukherjee, Saswata},
  title =	{{Exponential Lower Bounds via Exponential Sums}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.24},
  URN =		{urn:nbn:de:0030-drops-201677},
  doi =		{10.4230/LIPIcs.ICALP.2024.24},
  annote =	{Keywords: Algebraic complexity, parameterized complexity, exponential sums, counting hierarchy, tau conjecture}
}
Document
Track A: Algorithms, Complexity and Games
One-Way Communication Complexity of Partial XOR Functions

Authors: Vladimir V. Podolskii and Dmitrii Sluch

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Boolean function F(x,y) for x,y ∈ {0,1}ⁿ is an XOR function if F(x,y) = f(x⊕ y) for some function f on n input bits, where ⊕ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing the Fourier analytic technique. For total XOR functions, it is known that deterministic communication complexity of F is closely related to parity decision tree complexity of f. Montanaro and Osbourne (2009) observed that one-way communication complexity D_{cc}^{→}(F) of F is exactly equal to non-adaptive parity decision tree complexity NADT^{⊕}(f) of f. Hatami et al. (2018) showed that unrestricted communication complexity of F is polynomially related to parity decision tree complexity of f. We initiate the study of a similar connection for partial functions. We show that in the case of one-way communication complexity whether these measures are equal, depends on the number of undefined inputs of f. More precisely, if D_{cc}^{→}(F) = t and f is undefined on at most O((2^{n-t})/(√{n-t})) inputs, then NADT^{⊕}(f) = t. We also provide stronger bounds in extreme cases of small and large complexity. We show that the restriction on the number of undefined inputs in these results is unavoidable. That is, for a wide range of values of D_{cc}^{→}(F) and NADT^{⊕}(f) (from constant to n-2) we provide partial functions (with more than Ω((2^{n-t})/(√{n-t})) undefined inputs, where t = D_{cc}^{→}) for which D_{cc}^{→}(F) < NADT^{⊕}(f). In particular, we provide a function with an exponential gap between the two measures. Our separation results translate to the case of two-way communication complexity as well, in particular showing that the result of Hatami et al. (2018) cannot be generalized to partial functions. Previous results for total functions heavily rely on the Boolean Fourier analysis and thus, the technique does not translate to partial functions. For the proofs of our results we build a linear algebraic framework instead. Separation results are proved through the reduction to covering codes.

Cite as

Vladimir V. Podolskii and Dmitrii Sluch. One-Way Communication Complexity of Partial XOR Functions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 116:1-116:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{podolskii_et_al:LIPIcs.ICALP.2024.116,
  author =	{Podolskii, Vladimir V. and Sluch, Dmitrii},
  title =	{{One-Way Communication Complexity of Partial XOR Functions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{116:1--116:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.116},
  URN =		{urn:nbn:de:0030-drops-202591},
  doi =		{10.4230/LIPIcs.ICALP.2024.116},
  annote =	{Keywords: Partial functions, XOR functions, communication complexity, decision trees, covering codes}
}
Document
Branching Programs with Bounded Repetitions and Flow Formulas

Authors: Anastasia Sofronova and Dmitry Sokolov

Published in: LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)


Abstract
Restricted branching programs capture various complexity measures like space in Turing machines or length of proofs in proof systems. In this paper, we focus on the application in the proof complexity that was discovered by Lovasz et al. [László Lovász et al., 1995] who showed the equivalence between regular Resolution and read-once branching programs for "unsatisfied clause search problem" (Search_φ). This connection is widely used, in particular, in the recent breakthrough result about the Clique problem in regular Resolution by Atserias et al. [Albert Atserias et al., 2018]. We study the branching programs with bounded repetitions, so-called (1,+k)-BPs (Sieling [Detlef Sieling, 1996]) in application to the Search_φ problem. On the one hand, it is a natural generalization of read-once branching programs. On the other hand, this model gives a powerful proof system that can efficiently certify the unsatisfiability of a wide class of formulas that is hard for Resolution (Knop [Alexander Knop, 2017]). We deal with Search_φ that is "relatively easy" compared to all known hard examples for the (1,+k)-BPs. We introduce the first technique for proving exponential lower bounds for the (1,+k)-BPs on Search_φ. To do it we combine a well-known technique for proving lower bounds on the size of branching programs [Detlef Sieling, 1996; Detlef Sieling and Ingo Wegener, 1994; Stasys Jukna and Alexander A. Razborov, 1998] with the modification of the "closure" technique [Michael Alekhnovich et al., 2004; Michael Alekhnovich and Alexander A. Razborov, 2003]. In contrast with most Resolution lower bounds, our technique uses not only "local" properties of the formula, but also a "global" structure. Our hard examples are based on the Flow formulas introduced in [Michael Alekhnovich and Alexander A. Razborov, 2003].

Cite as

Anastasia Sofronova and Dmitry Sokolov. Branching Programs with Bounded Repetitions and Flow Formulas. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{sofronova_et_al:LIPIcs.CCC.2021.17,
  author =	{Sofronova, Anastasia and Sokolov, Dmitry},
  title =	{{Branching Programs with Bounded Repetitions and Flow Formulas}},
  booktitle =	{36th Computational Complexity Conference (CCC 2021)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-193-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{200},
  editor =	{Kabanets, Valentine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.17},
  URN =		{urn:nbn:de:0030-drops-142915},
  doi =		{10.4230/LIPIcs.CCC.2021.17},
  annote =	{Keywords: proof complexity, branching programs, bounded repetitions, lower bounds}
}
Document
Extended Abstract
Shrinkage Under Random Projections, and Cubic Formula Lower Bounds for AC0 (Extended Abstract)

Authors: Yuval Filmus, Or Meir, and Avishay Tal

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Håstad showed that any De Morgan formula (composed of AND, OR and NOT gates) shrinks by a factor of O(p²) under a random restriction that leaves each variable alive independently with probability p [SICOMP, 1998]. Using this result, he gave an Ω̃(n³) formula size lower bound for the Andreev function, which, up to lower order improvements, remains the state-of-the-art lower bound for any explicit function. In this work, we extend the shrinkage result of Håstad to hold under a far wider family of random restrictions and their generalization - random projections. Based on our shrinkage results, we obtain an Ω̃(n³) formula size lower bound for an explicit function computed in AC⁰. This improves upon the best known formula size lower bounds for AC⁰, that were only quadratic prior to our work. In addition, we prove that the KRW conjecture [Karchmer et al., Computational Complexity 5(3/4), 1995] holds for inner functions for which the unweighted quantum adversary bound is tight. In particular, this holds for inner functions with a tight Khrapchenko bound. Our random projections are tailor-made to the function’s structure so that the function maintains structure even under projection - using such projections is necessary, as standard random restrictions simplify AC⁰ circuits. In contrast, we show that any De Morgan formula shrinks by a quadratic factor under our random projections, allowing us to prove the cubic lower bound. Our proof techniques build on the proof of Håstad for the simpler case of balanced formulas. This allows for a significantly simpler proof at the cost of slightly worse parameters. As such, when specialized to the case of p-random restrictions, our proof can be used as an exposition of Håstad’s result.

Cite as

Yuval Filmus, Or Meir, and Avishay Tal. Shrinkage Under Random Projections, and Cubic Formula Lower Bounds for AC0 (Extended Abstract). In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 89:1-89:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{filmus_et_al:LIPIcs.ITCS.2021.89,
  author =	{Filmus, Yuval and Meir, Or and Tal, Avishay},
  title =	{{Shrinkage Under Random Projections, and Cubic Formula Lower Bounds for AC0}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{89:1--89:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.89},
  URN =		{urn:nbn:de:0030-drops-136281},
  doi =		{10.4230/LIPIcs.ITCS.2021.89},
  annote =	{Keywords: De Morgan formulas, KRW Conjecture, shrinkage, random restrictions, random projections, bounded depth circuits, constant depth circuits, formula complexity}
}
Document
Lower Bounds for DeMorgan Circuits of Bounded Negation Width

Authors: Stasys Jukna and Andrzej Lingas

Published in: LIPIcs, Volume 126, 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)


Abstract
We consider Boolean circuits over {or, and, neg} with negations applied only to input variables. To measure the "amount of negation" in such circuits, we introduce the concept of their "negation width". In particular, a circuit computing a monotone Boolean function f(x_1,...,x_n) has negation width w if no nonzero term produced (purely syntactically) by the circuit contains more than w distinct negated variables. Circuits of negation width w=0 are equivalent to monotone Boolean circuits, while those of negation width w=n have no restrictions. Our motivation is that already circuits of moderate negation width w=n^{epsilon} for an arbitrarily small constant epsilon>0 can be even exponentially stronger than monotone circuits. We show that the size of any circuit of negation width w computing f is roughly at least the minimum size of a monotone circuit computing f divided by K=min{w^m,m^w}, where m is the maximum length of a prime implicant of f. We also show that the depth of any circuit of negation width w computing f is roughly at least the minimum depth of a monotone circuit computing f minus log K. Finally, we show that formulas of bounded negation width can be balanced to achieve a logarithmic (in their size) depth without increasing their negation width.

Cite as

Stasys Jukna and Andrzej Lingas. Lower Bounds for DeMorgan Circuits of Bounded Negation Width. In 36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 126, pp. 41:1-41:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{jukna_et_al:LIPIcs.STACS.2019.41,
  author =	{Jukna, Stasys and Lingas, Andrzej},
  title =	{{Lower Bounds for DeMorgan Circuits of Bounded Negation Width}},
  booktitle =	{36th International Symposium on Theoretical Aspects of Computer Science (STACS 2019)},
  pages =	{41:1--41:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-100-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{126},
  editor =	{Niedermeier, Rolf and Paul, Christophe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2019.41},
  URN =		{urn:nbn:de:0030-drops-102801},
  doi =		{10.4230/LIPIcs.STACS.2019.41},
  annote =	{Keywords: Boolean circuits, monotone circuits, lower bounds}
}
Document
Graphs and Circuits: Some Further Remarks

Authors: Stasys Jukna

Published in: Dagstuhl Seminar Proceedings, Volume 6111, Complexity of Boolean Functions (2006)


Abstract
We consider the power of single level circuits in the context of graph complexity. We first prove that the single level conjecture fails for fanin-$2$ circuits over the basis ${oplus,land,1}$. This shows that the (surpisingly tight) phenomenon, established by Mirwald and Schnorr (1992) for quadratic functions, has no analogon for graphs. We then show that the single level conjecture fails for unbounded fanin circuits over ${lor,land,1}$. This partially answers the question of Pudl'ak, R"odl and Savick'y (1986). We also prove that $Sigma_2 eq Pi_2$ in a restricted version of the hierarhy of communication complexity classes introduced by Babai, Frankl and Simon (1986). Further, we show that even depth-$2$ circuits are surprisingly powerful: every bipartite $n imes n$ graph of maximum degree $Delta$ can be represented by a monotone CNF with $O(Deltalog n)$ clauses. We also discuss a relation between graphs and $ACC$-circuits.

Cite as

Stasys Jukna. Graphs and Circuits: Some Further Remarks. In Complexity of Boolean Functions. Dagstuhl Seminar Proceedings, Volume 6111, pp. 1-16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{jukna:DagSemProc.06111.8,
  author =	{Jukna, Stasys},
  title =	{{Graphs and Circuits: Some Further Remarks}},
  booktitle =	{Complexity of Boolean Functions},
  pages =	{1--16},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6111},
  editor =	{Matthias Krause and Pavel Pudl\'{a}k and R\"{u}diger Reischuk and Dieter van Melkebeek},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06111.8},
  URN =		{urn:nbn:de:0030-drops-6218},
  doi =		{10.4230/DagSemProc.06111.8},
  annote =	{Keywords: Graph complexity, single level conjecture, Sylvester graphs, communication complexity, ACC-circuits}
}
Document
Very Large Cliques are Easy to Detect

Authors: Alexander E. Andreev and Stasys Jukna

Published in: Dagstuhl Seminar Proceedings, Volume 6111, Complexity of Boolean Functions (2006)


Abstract
It is known that, for every constant $kgeq 3$, the presence of a $k$-clique (a complete subgraph on $k$ vertices) in an $n$-vertex graph cannot be detected by a monotone boolean circuit using fewer than $Omega((n/log n)^k)$ gates. We show that, for every constant $k$, the presence of an $(n-k)$-clique in an $n$-vertex graph can be detected by a monotone circuit using only $O(n^2log n)$ gates. Moreover, if we allow unbounded fanin, then $O(log n)$ gates are enough.

Cite as

Alexander E. Andreev and Stasys Jukna. Very Large Cliques are Easy to Detect. In Complexity of Boolean Functions. Dagstuhl Seminar Proceedings, Volume 6111, pp. 1-7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{andreev_et_al:DagSemProc.06111.22,
  author =	{Andreev, Alexander E. and Jukna, Stasys},
  title =	{{Very Large Cliques are Easy to Detect}},
  booktitle =	{Complexity of Boolean Functions},
  pages =	{1--7},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6111},
  editor =	{Matthias Krause and Pavel Pudl\'{a}k and R\"{u}diger Reischuk and Dieter van Melkebeek},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06111.22},
  URN =		{urn:nbn:de:0030-drops-6092},
  doi =		{10.4230/DagSemProc.06111.22},
  annote =	{Keywords: Clique function, monotone circuits, perfect hashing}
}
  • Refine by Author
  • 3 Jukna, Stasys
  • 1 Andreev, Alexander E.
  • 1 Beyersdorff, Olaf
  • 1 Bhattacharjee, Somnath
  • 1 Bläser, Markus
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Circuit complexity
  • 2 Theory of computation → Proof complexity
  • 1 Security and privacy → Information-theoretic techniques
  • 1 Theory of computation → Algebraic complexity theory
  • 1 Theory of computation → Automated reasoning
  • Show More...

  • Refine by Keyword
  • 3 lower bounds
  • 2 communication complexity
  • 2 monotone circuits
  • 1 #SAT
  • 1 ACC-circuits
  • Show More...

  • Refine by Type
  • 13 document

  • Refine by Publication Year
  • 8 2024
  • 2 2006
  • 2 2021
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail