106 Search Results for "Larsen, Kim G."


Volume

LIPIcs, Volume 83

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)

MFCS 2017, August 21-25, 2017, Aalborg, Denmark

Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin

Document
Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs

Authors: Xin Li and Yan Zhong

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Affine extractors give some of the best-known lower bounds for various computational models, such as AC⁰ circuits, parity decision trees, and general Boolean circuits. However, they are not known to give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov, Pudlák, and Talebanfard (CCC' 22) introduced a stronger version of affine extractors known as directional affine extractors, together with a generalization of ROBPs where each node can make linear queries, and showed that the former implies strong lower bound for a certain type of the latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case complexity 2^{n/3-o(n)} against SROLBPs with exponentially small correlation. A follow-up work by Chattopadhyay and Liao (CCC' 23) improves the hardness to 2^{n-o(n)} at the price of increasing the correlation to polynomially large, via a new connection to sumset extractors introduced by Chattopadhyay and Li (STOC' 16) and explicit constructions of such extractors by Chattopadhyay and Liao (STOC' 22). Both works left open the questions of better constructions of directional affine extractors and improved average-case complexity against SROLBPs in the regime of small correlation. This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and ROBPs. Our main results include: - An explicit construction of directional affine extractors with k = o(n) and exponentially small error, which gives average-case complexity 2^{n-o(n)} against SROLBPs with exponentially small correlation, thus answering the two open questions raised in previous works. - An explicit function in AC⁰ that gives average-case complexity 2^{(1-δ)n} against ROBPs with negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is known, and the best size lower bound for any function in AC⁰ against ROBPs is 2^Ω(n). One of the key ingredients in our constructions is a new linear somewhere condenser for affine sources, which is based on dimension expanders. The condenser also leads to an unconditional improvement of the entropy requirement of explicit affine extractors with negligible error. We further show that the condenser also works for general weak random sources, under the Polynomial Freiman-Ruzsa Theorem in 𝖥₂ⁿ, recently proved by Gowers, Green, Manners, and Tao (arXiv' 23).

Cite as

Xin Li and Yan Zhong. Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.CCC.2024.10,
  author =	{Li, Xin and Zhong, Yan},
  title =	{{Explicit Directional Affine Extractors and Improved Hardness for Linear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.10},
  URN =		{urn:nbn:de:0030-drops-204060},
  doi =		{10.4230/LIPIcs.CCC.2024.10},
  annote =	{Keywords: Randomness Extractors, Affine, Read-once Linear Branching Programs, Low-degree polynomials, AC⁰ circuits}
}
Document
Track A: Algorithms, Complexity and Games
Better Space-Time-Robustness Trade-Offs for Set Reconciliation

Authors: Djamal Belazzougui, Gregory Kucherov, and Stefan Walzer

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of reconstructing the symmetric difference between similar sets from their representations (sketches) of size linear in the number of differences. Exact solutions to this problem are based on error-correcting coding techniques and suffer from a large decoding time. Existing probabilistic solutions based on Invertible Bloom Lookup Tables (IBLTs) are time-efficient but offer insufficient success guarantees for many applications. Here we propose a tunable trade-off between the two approaches combining the efficiency of IBLTs with exponentially decreasing failure probability. The proof relies on a refined analysis of IBLTs proposed in (Bæk Tejs Houen et al. SOSA 2023) which has an independent interest. We also propose a modification of our algorithm that enables telling apart the elements of each set in the symmetric difference.

Cite as

Djamal Belazzougui, Gregory Kucherov, and Stefan Walzer. Better Space-Time-Robustness Trade-Offs for Set Reconciliation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 20:1-20:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{belazzougui_et_al:LIPIcs.ICALP.2024.20,
  author =	{Belazzougui, Djamal and Kucherov, Gregory and Walzer, Stefan},
  title =	{{Better Space-Time-Robustness Trade-Offs for Set Reconciliation}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.20},
  URN =		{urn:nbn:de:0030-drops-201639},
  doi =		{10.4230/LIPIcs.ICALP.2024.20},
  annote =	{Keywords: data structures, hashing, set reconciliation, invertible Bloom lookup tables, random hypergraphs, BCH codes}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Finite Presentation of Graphs of Treewidth at Most Three

Authors: Amina Doumane, Samuel Humeau, and Damien Pous

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide a finite equational presentation of graphs of treewidth at most three, solving an instance of an open problem by Courcelle and Engelfriet. We use a syntax generalising series-parallel expressions, denoting graphs with a small interface. We introduce appropriate notions of connectivity for such graphs (components, cutvertices, separation pairs). We use those concepts to analyse the structure of graphs of treewidth at most three, showing how they can be decomposed recursively, first canonically into connected parallel components, and then non-deterministically. The main difficulty consists in showing that all non-deterministic choices can be related using only finitely many equational axioms.

Cite as

Amina Doumane, Samuel Humeau, and Damien Pous. A Finite Presentation of Graphs of Treewidth at Most Three. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 135:1-135:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doumane_et_al:LIPIcs.ICALP.2024.135,
  author =	{Doumane, Amina and Humeau, Samuel and Pous, Damien},
  title =	{{A Finite Presentation of Graphs of Treewidth at Most Three}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{135:1--135:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.135},
  URN =		{urn:nbn:de:0030-drops-202787},
  doi =		{10.4230/LIPIcs.ICALP.2024.135},
  annote =	{Keywords: Graphs, treewidth, connectedness, axiomatisation, series-parallel expressions}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions

Authors: Wojciech Różowski

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Deterministic automata have been traditionally studied through the point of view of language equivalence, but another perspective is given by the canonical notion of shortest-distinguishing-word distance quantifying the of states. Intuitively, the longer the word needed to observe a difference between two states, then the closer their behaviour is. In this paper, we give a sound and complete axiomatisation of shortest-distinguishing-word distance between regular languages. Our axiomatisation relies on a recently developed quantitative analogue of equational logic, allowing to manipulate rational-indexed judgements of the form e ≡_ε f meaning term e is approximately equivalent to term f within the error margin of ε. The technical core of the paper is dedicated to the completeness argument that draws techniques from order theory and Banach spaces to simplify the calculation of the behavioural distance to the point it can be then mimicked by axiomatic reasoning.

Cite as

Wojciech Różowski. A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 149:1-149:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rozowski:LIPIcs.ICALP.2024.149,
  author =	{R\'{o}\.{z}owski, Wojciech},
  title =	{{A Complete Quantitative Axiomatisation of Behavioural Distance of Regular Expressions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{149:1--149:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.149},
  URN =		{urn:nbn:de:0030-drops-202920},
  doi =		{10.4230/LIPIcs.ICALP.2024.149},
  annote =	{Keywords: Regular Expressions, Behavioural Distances, Quantitative Equational Theories}
}
Document
Introduction
Introduction to the Special Issue on Distributed Hybrid Systems

Authors: Alessandro Abate, Uli Fahrenberg, and Martin Fränzle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
This special issue contains seven papers within the broad subject of Distributed Hybrid Systems, that is, systems combining hybrid discrete-continuous state spaces with elements of concurrency and logical or spatial distribution. It follows up on several workshops on the same theme which were held between 2017 and 2019 and organized by the editors of this volume. The first of these workshops was held in Aalborg, Denmark, in August 2017 and associated with the MFCS conference. It featured invited talks by Alessandro Abate, Martin Fränzle, Kim G. Larsen, Martin Raussen, and Rafael Wisniewski. The second workshop was held in Palaiseau, France, in July 2018, with invited talks by Luc Jaulin, Thao Dang, Lisbeth Fajstrup, Emmanuel Ledinot, and André Platzer. The third workshop was held in Amsterdam, The Netherlands, in August 2019, associated with the CONCUR conference. It featured a special theme on distributed robotics and had invited talks by Majid Zamani, Hervé de Forges, and Xavier Urbain. The vision and purpose of the DHS workshops was to connect researchers working in real-time systems, hybrid systems, control theory, formal verification, distributed computing, and concurrency theory, in order to advance the subject of distributed hybrid systems. Such systems are abundant and often safety-critical, but ensuring their correct functioning can in general be challenging. The investigation of their dynamics by analysis tools from the aforementioned domains remains fragmentary, providing the rationale behind the workshops: it was conceived that convergence and interaction of theories, methods, and tools from these different areas was needed in order to advance the subject.

Cite as

LITES, Volume 8, Issue 2: Special Issue on Distributed Hybrid Systems, pp. 0:i-0:iii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{abate_et_al:LITES.8.2.0,
  author =	{Abate, Alessandro and Fahrenberg, Uli and Fr\"{a}nzle, Martin},
  title =	{{Introduction to the Special Issue on Distributed Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{00:1--00:3},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.0},
  doi =		{10.4230/LITES.8.2.0},
  annote =	{Keywords: Distributed hybrid systems}
}
Document
Invited Paper
Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games (Invited Paper)

Authors: Kim G. Larsen

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
UPPAAL-Stratego is a recent branch of the verification tool UPPAAL allowing for synthesis of safe and optimal strategies for stochastic timed (hybrid) games. We describe newly developed learning methods, allowing for synthesis of significantly better strategies and with much improved convergence behaviour. Also, we describe novel use of decision trees for learning orders-of-magnitude more compact strategy representation. In both cases, the seek for optimality does not compromise safety.

Cite as

Kim G. Larsen. Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games (Invited Paper). In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 2:1-2:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{larsen:LIPIcs.CONCUR.2019.2,
  author =	{Larsen, Kim G.},
  title =	{{Synthesis of Safe, Optimal and Compact Strategies for Stochastic Hybrid Games}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{2:1--2:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.2},
  URN =		{urn:nbn:de:0030-drops-109048},
  doi =		{10.4230/LIPIcs.CONCUR.2019.2},
  annote =	{Keywords: Timed automata, Stochastic hybrid grame, Symbolic synthesis, Reinforcement learning, Q-learning, M-learning}
}
Document
Computing Probabilistic Bisimilarity Distances for Probabilistic Automata

Authors: Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang, and Franck van Breugel

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynch’s probabilistic bisimilarity for probabilistic automata. In this paper, we present a novel characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condon’s simple policy iteration on these games. The correctness of Condon’s approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in UP cap coUP and PPAD. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. In the proofs of all the above-mentioned results, an alternative presentation of the Hausdorff distance due to Mémoli plays a central rôle.

Cite as

Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare, Qiyi Tang, and Franck van Breugel. Computing Probabilistic Bisimilarity Distances for Probabilistic Automata. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bacci_et_al:LIPIcs.CONCUR.2019.9,
  author =	{Bacci, Giorgio and Bacci, Giovanni and Larsen, Kim G. and Mardare, Radu and Tang, Qiyi and van Breugel, Franck},
  title =	{{Computing Probabilistic Bisimilarity Distances for Probabilistic Automata}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.9},
  URN =		{urn:nbn:de:0030-drops-109119},
  doi =		{10.4230/LIPIcs.CONCUR.2019.9},
  annote =	{Keywords: Probabilistic automata, Behavioural metrics, Simple stochastic games, Simple policy iteration algorithm}
}
Document
Partial Order Reduction for Reachability Games

Authors: Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim G. Larsen, Marco Muñiz, and Jiří Srba

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Partial order reductions have been successfully applied to model checking of concurrent systems and practical applications of the technique show nontrivial reduction in the size of the explored state space. We present a theory of partial order reduction based on stubborn sets in the game-theoretical setting of 2-player games with reachability/safety objectives. Our stubborn reduction allows us to prune the interleaving behaviour of both players in the game, and we formally prove its correctness on the class of games played on general labelled transition systems. We then instantiate the framework to the class of weighted Petri net games with inhibitor arcs and provide its efficient implementation in the model checker TAPAAL. Finally, we evaluate our stubborn reduction on several case studies and demonstrate its efficiency.

Cite as

Frederik Meyer Bønneland, Peter Gjøl Jensen, Kim G. Larsen, Marco Muñiz, and Jiří Srba. Partial Order Reduction for Reachability Games. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 23:1-23:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bnneland_et_al:LIPIcs.CONCUR.2019.23,
  author =	{B{\o}nneland, Frederik Meyer and Jensen, Peter Gj{\o}l and Larsen, Kim G. and Mu\~{n}iz, Marco and Srba, Ji\v{r}{\'\i}},
  title =	{{Partial Order Reduction for Reachability Games}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{23:1--23:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.23},
  URN =		{urn:nbn:de:0030-drops-109251},
  doi =		{10.4230/LIPIcs.CONCUR.2019.23},
  annote =	{Keywords: Petri nets, games, synthesis, partial order reduction, stubborn sets}
}
Document
Complete Volume
LIPIcs, Volume 83, MFCS'17, Complete Volume

Authors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
LIPIcs, Volume 83, MFCS'17, Complete Volume

Cite as

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Proceedings{larsen_et_al:LIPIcs.MFCS.2017,
  title =	{{LIPIcs, Volume 83, MFCS'17, Complete Volume}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017},
  URN =		{urn:nbn:de:0030-drops-82073},
  doi =		{10.4230/LIPIcs.MFCS.2017},
  annote =	{Keywords: Theory of Computation}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 0:i-0:xvi, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{larsen_et_al:LIPIcs.MFCS.2017.0,
  author =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{0:i--0:xvi},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.0},
  URN =		{urn:nbn:de:0030-drops-80564},
  doi =		{10.4230/LIPIcs.MFCS.2017.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Does Looking Inside a Circuit Help?

Authors: Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre McKenzie, and Shadab Romani

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
The Black-Box Hypothesisstates that any property of Boolean functions decided efficiently (e.g., in BPP) with inputs represented by circuits can also be decided efficiently in the black-box setting, where an algorithm is given an oracle access to the input function and an upper bound on its circuit size. If this hypothesis is true, then P neq NP. We focus on the consequences of the hypothesis being false, showing that (under general conditions on the structure of a counterexample) it implies a non-trivial algorithm for CSAT. More specifically, we show that if there is a property F of boolean functions such that F has high sensitivity on some input function f of subexponential circuit complexity (which is a sufficient condition for F being a counterexample to the Black-Box Hypothesis), then CSAT is solvable by a subexponential-size circuit family. Moreover, if such a counterexample F is symmetric, then CSAT is in Ppoly. These results provide some evidence towards the conjecture (made in this paper) that the Black-Box Hypothesis is false if and only if CSAT is easy.

Cite as

Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, Pierre McKenzie, and Shadab Romani. Does Looking Inside a Circuit Help?. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{impagliazzo_et_al:LIPIcs.MFCS.2017.1,
  author =	{Impagliazzo, Russell and Kabanets, Valentine and Kolokolova, Antonina and McKenzie, Pierre and Romani, Shadab},
  title =	{{Does Looking Inside a Circuit Help?}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{1:1--1:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.1},
  URN =		{urn:nbn:de:0030-drops-80975},
  doi =		{10.4230/LIPIcs.MFCS.2017.1},
  annote =	{Keywords: Black-Box Hypothesis, Rice's theorem, circuit complexity, SAT, sensitivity of boolean functions, decision tree complexity}
}
Document
The Power of Programs over Monoids in DA

Authors: Nathan Grosshans, Pierre McKenzie, and Luc Segoufin

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
The program-over-monoid model of computation originates with Barrington's proof that it captures the complexity class NC^1. Here we make progress in understanding the subtleties of the model. First, we identify a new tameness condition on a class of monoids that entails a natural characterization of the regular languages recognizable by programs over monoids from the class. Second, we prove that the class known as DA satisfies tameness and hence that the regular languages recognized by programs over monoids in DA are precisely those recognizable in the classical sense by morphisms from QDA. Third, we show by contrast that the well studied class of monoids called J is not tame and we exhibit a regular language, recognized by a program over a monoid from J, yet not recognizable classically by morphisms from the class QJ. Finally, we exhibit a program-length-based hierarchy within the class of languages recognized by programs over monoids from DA.

Cite as

Nathan Grosshans, Pierre McKenzie, and Luc Segoufin. The Power of Programs over Monoids in DA. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 2:1-2:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{grosshans_et_al:LIPIcs.MFCS.2017.2,
  author =	{Grosshans, Nathan and McKenzie, Pierre and Segoufin, Luc},
  title =	{{The Power of Programs over Monoids in DA}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{2:1--2:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.2},
  URN =		{urn:nbn:de:0030-drops-80909},
  doi =		{10.4230/LIPIcs.MFCS.2017.2},
  annote =	{Keywords: Programs over monoids, DA, lower-bounds}
}
Document
Regular Language Distance and Entropy

Authors: Austin J. Parker, Kelly B. Yancey, and Matthew P. Yancey

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
This paper addresses the problem of determining the distance between two regular languages. It will show how to expand Jaccard distance, which works on finite sets, to potentially-infinite regular languages. The entropy of a regular language plays a large role in the extension. Much of the paper is spent investigating the entropy of a regular language. This includes addressing issues that have required previous authors to rely on the upper limit of Shannon's traditional formulation of channel capacity, because its limit does not always exist. The paper also includes proposing a new limit based formulation for the entropy of a regular language and proves that formulation to both exist and be equivalent to Shannon's original formulation (when it exists). Additionally, the proposed formulation is shown to equal an analogous but formally quite different notion of topological entropy from Symbolic Dynamics -- consequently also showing Shannon's original formulation to be equivalent to topological entropy. Surprisingly, the natural Jaccard-like entropy distance is trivial in most cases. Instead, the entropy sum distance metric is suggested, and shown to be granular in certain situations.

Cite as

Austin J. Parker, Kelly B. Yancey, and Matthew P. Yancey. Regular Language Distance and Entropy. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{parker_et_al:LIPIcs.MFCS.2017.3,
  author =	{Parker, Austin J. and Yancey, Kelly B. and Yancey, Matthew P.},
  title =	{{Regular Language Distance and Entropy}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.3},
  URN =		{urn:nbn:de:0030-drops-80945},
  doi =		{10.4230/LIPIcs.MFCS.2017.3},
  annote =	{Keywords: regular languages, channel capacity, entropy, Jaccard, symbolic dynamics}
}
Document
The Complexity of Boolean Surjective General-Valued CSPs

Authors: Peter Fulla and Stanislav Zivny

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
Valued constraint satisfaction problems (VCSPs) are discrete optimisation problems with the objective function given as a sum of fixed-arity functions; the values are rational numbers or infinity. In Boolean surjective VCSPs variables take on labels from D={0,1} and an optimal assignment is required to use both labels from D. A classic example is the global min-cut problem in graphs. Building on the work of Uppman, we establish a dichotomy theorem and thus give a complete complexity classification of Boolean surjective VCSPs. The newly discovered tractable case has an interesting structure related to projections of downsets and upsets. Our work generalises the dichotomy for {0,infinity}-valued constraint languages corresponding to CSPs) obtained by Creignou and Hebrard, and the dichotomy for {0,1}-valued constraint languages (corresponding to Min-CSPs) obtained by Uppman.

Cite as

Peter Fulla and Stanislav Zivny. The Complexity of Boolean Surjective General-Valued CSPs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{fulla_et_al:LIPIcs.MFCS.2017.4,
  author =	{Fulla, Peter and Zivny, Stanislav},
  title =	{{The Complexity of Boolean Surjective General-Valued CSPs}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.4},
  URN =		{urn:nbn:de:0030-drops-80623},
  doi =		{10.4230/LIPIcs.MFCS.2017.4},
  annote =	{Keywords: constraint satisfaction problems, surjective CSP, valued CSP, min-cut, polymorphisms, multimorphisms}
}
  • Refine by Author
  • 14 Larsen, Kim G.
  • 5 Mardare, Radu
  • 3 Bacci, Giorgio
  • 3 Bacci, Giovanni
  • 3 Chatterjee, Krishnendu
  • Show More...

  • Refine by Classification
  • 1 Mathematics of computing → Paths and connectivity problems
  • 1 Mathematics of computing → Probability and statistics
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Circuit complexity
  • 1 Theory of computation → Design and analysis of algorithms
  • Show More...

  • Refine by Keyword
  • 4 NP-completeness
  • 4 computational complexity
  • 3 Complexity
  • 3 Decidability
  • 3 Kolmogorov complexity
  • Show More...

  • Refine by Type
  • 105 document
  • 1 volume

  • Refine by Publication Year
  • 90 2017
  • 4 2024
  • 3 2019
  • 2 2009
  • 2 2016
  • Show More...