17 Search Results for "Levenshtein, Vladimir I."


Document
RANDOM
Trace Reconstruction from Local Statistical Queries

Authors: Xi Chen, Anindya De, Chin Ho Lee, and Rocco A. Servedio

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The goal of trace reconstruction is to reconstruct an unknown n-bit string x given only independent random traces of x, where a random trace of x is obtained by passing x through a deletion channel. A Statistical Query (SQ) algorithm for trace reconstruction is an algorithm which can only access statistical information about the distribution of random traces of x rather than individual traces themselves. Such an algorithm is said to be 𝓁-local if each of its statistical queries corresponds to an 𝓁-junta function over some block of 𝓁 consecutive bits in the trace. Since several - but not all - known algorithms for trace reconstruction fall under the local statistical query paradigm, it is interesting to understand the abilities and limitations of local SQ algorithms for trace reconstruction. In this paper we establish nearly-matching upper and lower bounds on local Statistical Query algorithms for both worst-case and average-case trace reconstruction. For the worst-case problem, we show that there is an Õ(n^{1/5})-local SQ algorithm that makes all its queries with tolerance τ ≥ 2^{-Õ(n^{1/5})}, and also that any Õ(n^{1/5})-local SQ algorithm must make some query with tolerance τ ≤ 2^{-Ω̃(n^{1/5})}. For the average-case problem, we show that there is an O(log n)-local SQ algorithm that makes all its queries with tolerance τ ≥ 1/poly(n), and also that any O(log n)-local SQ algorithm must make some query with tolerance τ ≤ 1/poly(n).

Cite as

Xi Chen, Anindya De, Chin Ho Lee, and Rocco A. Servedio. Trace Reconstruction from Local Statistical Queries. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 52:1-52:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX/RANDOM.2024.52,
  author =	{Chen, Xi and De, Anindya and Lee, Chin Ho and Servedio, Rocco A.},
  title =	{{Trace Reconstruction from Local Statistical Queries}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{52:1--52:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.52},
  URN =		{urn:nbn:de:0030-drops-210459},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.52},
  annote =	{Keywords: trace reconstruction, statistical queries, algorithmic statistics}
}
Document
Is Familiarity Reflected in the Spatial Knowledge Revealed by Sketch Maps?

Authors: Markus Kattenbeck, Daniel R. Montello, Martin Raubal, and Ioannis Giannopoulos

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
Despite the frequent use of sketch maps in assessing environmental knowledge, it remains unclear how and to what degree familiarity impacts sketch map content. In the present study, we assess whether different levels of familiarity relate to differences in the content and spatial accuracy of environmental knowledge depicted in sketch maps drawn for the purpose of route instructions. To this end, we conduct a real-world wayfinding study with 91 participants, all of whom have to walk along a pre-defined route of approximately 2.3km length. Prior to the walk, we collect self-report familiarity ratings from participants for both a set of 15 landmarks and a set of areas we define as hexagons along the route. Once participants finished walking the route, they were asked to sketch a map of the route, specifically a sketch that would enable a person who had never walked the route to follow it. We found that participants unfamiliar with the areas along the route sketched fewer features than familiar people did. Contrary to our expectations, however, we found that landmarks were sketched or not regardless of participants' level of familiarity with the landmarks. We were also surprised that the level of familiarity was not correlated to the accuracy of the sketched order of features along the route, of the position of sketched features in relation to the route, nor to the metric locational accuracy of feature placement on the sketches. These results lead us to conclude that different aspects of feature salience influence whether the features are included on sketch maps, independent of familiarity. They also point to the influence of task context on the content of sketch maps, again independent of familiarity. We propose further studies to more fully explore these ideas.

Cite as

Markus Kattenbeck, Daniel R. Montello, Martin Raubal, and Ioannis Giannopoulos. Is Familiarity Reflected in the Spatial Knowledge Revealed by Sketch Maps?. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kattenbeck_et_al:LIPIcs.COSIT.2024.6,
  author =	{Kattenbeck, Markus and Montello, Daniel R. and Raubal, Martin and Giannopoulos, Ioannis},
  title =	{{Is Familiarity Reflected in the Spatial Knowledge Revealed by Sketch Maps?}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.6},
  URN =		{urn:nbn:de:0030-drops-208215},
  doi =		{10.4230/LIPIcs.COSIT.2024.6},
  annote =	{Keywords: Familiarity, Spatial Knowledge, Sketch Maps}
}
Document
A*PA2: Up to 19× Faster Exact Global Alignment

Authors: Ragnar Groot Koerkamp

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Motivation. Pairwise alignment is at the core of computational biology. Most commonly used exact methods are either based on O(ns) band doubling or O(n+s²) diagonal transition, where n is the sequence length and s the number of errors. However, as the length of sequences has grown, these exact methods are often replaced by approximate methods based on e.g. seed-and-extend and heuristics to bound the computed region. We would like to develop an exact method that matches the performance of these approximate methods. Recently, Astarix introduced the A* shortest path algorithm with the seed heuristic for exact sequence-to-graph alignment. A*PA adapted and improved this for pairwise sequence alignment and achieves near-linear runtime when divergence (error rate) is low, at the cost of being very slow when divergence is high. Methods. We introduce A*PA2, an exact global pairwise aligner with respect to edit distance. The goal of A*PA2 is to unify the near-linear runtime of A*PA on similar sequences with the efficiency of dynamic programming (DP) based methods. Like Edlib, A*PA2 uses Ukkonen’s band doubling in combination with Myers' bitpacking. A*PA2 1) uses large block sizes inspired by Block Aligner, 2) extends this with SIMD (single instruction, multiple data), 3) introduces a new profile for efficient computations, 4) introduces a new optimistic technique for traceback based on diagonal transition, 5) avoids recomputation of states where possible, and 6) applies the heuristics developed in A*PA and improves them using pre-pruning. Results. With the first 4 engineering optimizations, A*PA2-simple has complexity O(ns) and is 6× to 8× faster than Edlib for sequences ≥ 10 kbp. A*PA2-full also includes the heuristic and is often near-linear in practice for sequences with small divergence. The average runtime of A*PA2 is 19× faster than the exact aligners BiWFA and Edlib on >500 kbp long ONT (Oxford Nanopore Technologies) reads of a human genome having 6% divergence on average. On shorter ONT reads of 11% average divergence the speedup is 5.6× (avg. length 11 kbp) and 0.81× (avg. length 800 bp). On all tested datasets, A*PA2 is competitive with or faster than approximate methods.

Cite as

Ragnar Groot Koerkamp. A*PA2: Up to 19× Faster Exact Global Alignment. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grootkoerkamp:LIPIcs.WABI.2024.17,
  author =	{Groot Koerkamp, Ragnar},
  title =	{{A*PA2: Up to 19× Faster Exact Global Alignment}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.17},
  URN =		{urn:nbn:de:0030-drops-206610},
  doi =		{10.4230/LIPIcs.WABI.2024.17},
  annote =	{Keywords: Edit distance, Pairwise alignment, A*, Shortest path, Dynamic programming}
}
Document
Pseudorandomness, Symmetry, Smoothing: I

Authors: Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We prove several new results about bounded uniform and small-bias distributions. A main message is that, small-bias, even perturbed with noise, does not fool several classes of tests better than bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth circuits. In particular, we obtain small-bias distributions that - achieve an optimal lower bound on their statistical distance to any bounded-uniform distribution. This closes a line of research initiated by Alon, Goldreich, and Mansour in 2003, and improves on a result by O'Donnell and Zhao. - have heavier tail mass than the uniform distribution. This answers a question posed by several researchers including Bun and Steinke. - rule out a popular paradigm for constructing pseudorandom generators, originating in a 1989 work by Ajtai and Wigderson. This again answers a question raised by several researchers. For branching programs, our result matches a bound by Forbes and Kelley. Our small-bias distributions above are symmetric. We show that the xor of any two symmetric small-bias distributions fools any bounded function. Hence our examples cannot be extended to the xor of two small-bias distributions, another popular paradigm whose power remains unknown. We also generalize and simplify the proof of a result of Bazzi.

Cite as

Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola. Pseudorandomness, Symmetry, Smoothing: I. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 18:1-18:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{derksen_et_al:LIPIcs.CCC.2024.18,
  author =	{Derksen, Harm and Ivanov, Peter and Lee, Chin Ho and Viola, Emanuele},
  title =	{{Pseudorandomness, Symmetry, Smoothing: I}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{18:1--18:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.18},
  URN =		{urn:nbn:de:0030-drops-204144},
  doi =		{10.4230/LIPIcs.CCC.2024.18},
  annote =	{Keywords: pseudorandomness, k-wise uniform distributions, small-bias distributions, noise, symmetric tests, thresholds, Krawtchouk polynomials}
}
Document
Barcode Selection and Layout Optimization in Spatial Transcriptomics

Authors: Frederik L. Jatzkowski, Antonia Schmidt, Robert Mank, Steffen Schüler, and Matthias Müller-Hannemann

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
An important special case of the quadratic assignment problem arises in the synthesis of DNA microarrays for high-resolution spatial transcriptomics. The task is to select a suitable subset from a set of barcodes, i. e. short DNA strings that serve as unique identifiers, and to assign the selected barcodes to positions on a two-dimensional array in such a way that a position-dependent cost function is minimized. A typical microarray with dimensions of 768×1024 requires 786,432 many barcodes to be placed, leading to very challenging large-scale combinatorial optimization problems. The general quadratic assignment problem is well-known for its hardness, both in theory and in practice. It turns out that this also holds for the special case of the barcode layout problem. We show that the problem is even hard to approximate: It is MaxSNP-hard. An ILP formulation theoretically allows the computation of optimal results, but it is only applicable for tiny instances. Therefore, we have developed layout constructing and improving heuristics with the aim of computing near-optimal solutions for instances of realistic size. These include a sorting-based algorithm, a greedy algorithm, 2-OPT-based local search and a genetic algorithm. To assess the quality of the results, we compare the generated solutions with the expected cost of a random layout and with lower bounds. A combination of the greedy algorithm and 2-OPT local search produces the most promising results in terms of both quality and runtime. Solutions to large-scale instances with arrays of dimension 768×1024 show a 37% reduction in cost over a random solution and can be computed in about 3 minutes. Since the universe of suitable barcodes is much larger than the number of barcodes needed, this can be exploited. Experiments with different surpluses of barcodes show that a significant improvement in layout quality can be achieved at the cost of a reasonable increase in runtime. Another interesting finding is that the restriction of the barcode design space by biochemical constraints is actually beneficial for the overall layout cost.

Cite as

Frederik L. Jatzkowski, Antonia Schmidt, Robert Mank, Steffen Schüler, and Matthias Müller-Hannemann. Barcode Selection and Layout Optimization in Spatial Transcriptomics. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jatzkowski_et_al:LIPIcs.SEA.2024.17,
  author =	{Jatzkowski, Frederik L. and Schmidt, Antonia and Mank, Robert and Sch\"{u}ler, Steffen and M\"{u}ller-Hannemann, Matthias},
  title =	{{Barcode Selection and Layout Optimization in Spatial Transcriptomics}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.17},
  URN =		{urn:nbn:de:0030-drops-203821},
  doi =		{10.4230/LIPIcs.SEA.2024.17},
  annote =	{Keywords: Spatial Transcriptomics, Array Layout, Optimization, Computational Complexity, GPU Computing, Integer Linear Programming, Metaheuristics}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Edit Distance of Finite State Transducers

Authors: C. Aiswarya, Amaldev Manuel, and Saina Sunny

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We lift metrics over words to metrics over word-to-word transductions, by defining the distance between two transductions as the supremum of the distances of their respective outputs over all inputs. This allows to compare transducers beyond equivalence. Two transducers are close (resp. k-close) with respect to a metric if their distance is finite (resp. at most k). Over integer-valued metrics computing the distance between transducers is equivalent to deciding the closeness and k-closeness problems. For common integer-valued edit distances such as, Hamming, transposition, conjugacy and Levenshtein family of distances, we show that the closeness and the k-closeness problems are decidable for functional transducers. Hence, the distance with respect to these metrics is also computable. Finally, we relate the notion of distance between functions to the notions of diameter of a relation and index of a relation in another. We show that computing edit distance between functional transducers is equivalent to computing diameter of a rational relation and both are a specific instance of the index problem of rational relations.

Cite as

C. Aiswarya, Amaldev Manuel, and Saina Sunny. Edit Distance of Finite State Transducers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 125:1-125:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{aiswarya_et_al:LIPIcs.ICALP.2024.125,
  author =	{Aiswarya, C. and Manuel, Amaldev and Sunny, Saina},
  title =	{{Edit Distance of Finite State Transducers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{125:1--125:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.125},
  URN =		{urn:nbn:de:0030-drops-202682},
  doi =		{10.4230/LIPIcs.ICALP.2024.125},
  annote =	{Keywords: transducers, edit distance, conjugacy}
}
Document
Local Minimax Learning of Approximately Polynomial Functions

Authors: Lee Jones and Konstantin Rybnikov

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
Suppose we have a number of noisy measurements of an unknown real-valued function $f$ near point of interest $mathbf{x}_0 in mathbb{R}^d$. Suppose also that nothing can be assumed about the noise distribution, except for zero mean and bounded covariance matrix. We want to estimate $f$ at $mathbf{x=x}_0$ using a general linear parametric family $f(mathbf{x};mathbf{a}) = a_0 h_0 (mathbf{x}) ++ a_q h_q (mathbf{x})$, where $mathbf{a} in mathbb{R}^q$ and $h_i$'s are bounded functions on a neighborhood $B$ of $mathbf{x}_0$ which contains all points of measurement. Typically, $B$ is a Euclidean ball or cube in $mathbb{R}^d$ (more generally, a ball in an $l_p$-norm). In the case when the $h_i$'s are polynomial functions in $x_1,ldots,x_d$ the model is called locally-polynomial. In particular, if the $h_i$'s form a basis of the linear space of polynomials of degree at most two, the model is called locally-quadratic (if the degree is at most three, the model is locally-cubic, etc.). Often, there is information, which is called context, about the function $f$ (restricted to $B$ ) available, such as that it takes values in a known interval, or that it satisfies a Lipschitz condition. The theory of local minimax estimation with context for locally-polynomial models and approximately locally polynomial models has been recently initiated by Jones. In the case of local linearity and a bound on the change of $f$ on $B$, where $B$ is a ball, the solution for squared error loss is in the form of ridge regression, where the ridge parameter is identified; hence, minimax justification for ridge regression is given together with explicit best error bounds. The analysis of polynomial models of degree above 1 leads to interesting and difficult questions in real algebraic geometry and non-linear optimization. We show that in the case when $f$ is a probability function, the optimal (in the minimax sense) estimator is effectively computable (with any given precision), thanks to Tarski's elimination principle.

Cite as

Lee Jones and Konstantin Rybnikov. Local Minimax Learning of Approximately Polynomial Functions. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2007)


Copy BibTex To Clipboard

@InProceedings{jones_et_al:DagSemProc.06201.3,
  author =	{Jones, Lee and Rybnikov, Konstantin},
  title =	{{Local Minimax Learning of Approximately Polynomial Functions}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--12},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2007},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.3},
  URN =		{urn:nbn:de:0030-drops-8912},
  doi =		{10.4230/DagSemProc.06201.3},
  annote =	{Keywords: Local learning, statistical learning, estimator, minimax, convex optimization, quantifier elimination, semialgebraic, ridge regression, polynomial}
}
Document
Solving Classical String Problems an Compressed Texts

Authors: Yury Lifshits

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
How to solve string problems, if instead of input string we get only program generating it? Is it possible to solve problems faster than just "generate text + apply classical algorithm"? In this paper we consider strings generated by straight-line programs (SLP). These are programs using only assignment operator. We show new algorithms for equivalence, pattern matching, finding periods and covers, computing fingerprint table on SLP-generated strings. From the other hand, computing the Hamming distance is NP-hard. Main corollary is an $O(n2*m)$ algorithm for pattern matching in LZ-compressed texts.

Cite as

Yury Lifshits. Solving Classical String Problems an Compressed Texts. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{lifshits:DagSemProc.06201.7,
  author =	{Lifshits, Yury},
  title =	{{Solving Classical String Problems an Compressed Texts}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--10},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.7},
  URN =		{urn:nbn:de:0030-drops-7984},
  doi =		{10.4230/DagSemProc.06201.7},
  annote =	{Keywords: Pattern matching, Compressed text}
}
Document
06201 Abstracts Collection – Combinatorial and Algorithmic Foundations of Pattern and Association Discovery

Authors: Rudolf Ahlswede, Alberto Apostolico, and Vladimir I. Levenshtein

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
From 15.05.06 to 20.05.06, the Dagstuhl Seminar 06201 ``Combinatorial and Algorithmic Foundations of Pattern and Association Discovery'' was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available.

Cite as

Rudolf Ahlswede, Alberto Apostolico, and Vladimir I. Levenshtein. 06201 Abstracts Collection – Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{ahlswede_et_al:DagSemProc.06201.1,
  author =	{Ahlswede, Rudolf and Apostolico, Alberto and Levenshtein, Vladimir I.},
  title =	{{06201 Abstracts Collection – Combinatorial and Algorithmic Foundations of Pattern and Association Discovery}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--15},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.1},
  URN =		{urn:nbn:de:0030-drops-7873},
  doi =		{10.4230/DagSemProc.06201.1},
  annote =	{Keywords: Data compression, pattern matching, pattern discovery, search, sorting, molecular biology, reconstruction, genome rearrangements}
}
Document
06201 Executive Summary – Combinatorial and Algorithmic Foundations of Pattern and Association Discovery

Authors: Rudolf Ahlswede, Alberto Apostolico, and Vladimir I. Levenshtein

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
The goals of this seminar have been (1) to identify and match recently developed methods to specific tasks and data sets in a core of application areas; next, based on feedback from the specific applied domain, (2) to fine tune and personalize those applications, and finally (3) to identify and tackle novel combinatorial and algorithmic problems, in some cases all the way to the development of novel software tools.

Cite as

Rudolf Ahlswede, Alberto Apostolico, and Vladimir I. Levenshtein. 06201 Executive Summary – Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{ahlswede_et_al:DagSemProc.06201.2,
  author =	{Ahlswede, Rudolf and Apostolico, Alberto and Levenshtein, Vladimir I.},
  title =	{{06201 Executive Summary – Combinatorial and Algorithmic Foundations of Pattern and Association Discovery}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--2},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.2},
  URN =		{urn:nbn:de:0030-drops-7926},
  doi =		{10.4230/DagSemProc.06201.2},
  annote =	{Keywords: Data compression, pattern matching, pattern discovery, search, sorting, molecular biology, reconstruction, genome rearrangements}
}
Document
Non--binary error correcting codes with noiseless feedback, localized errors, or both

Authors: Rudolf Ahlswede, Christian Deppe, and Vladimir Lebedev

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
We investigate non--binary error correcting codes with noiseless feedback, localized errors, or both. It turns out that the Hamming bound is a central concept. For block codes with feedback we present here a coding scheme based on an idea of erasions, which we call the {\bf rubber method}. It gives an optimal rate for big error correcting fraction $\tau$ ($>{1\over q}$) and infinitely many points on the Hamming bound for small $\tau$. We also consider variable length codes with all lengths bounded from above by $n$ and the end of a word carries the symbol $\Box$ and is thus recognizable by the decoder. For both, the $\Box$-model with feedback and the $\Box$-model with localized errors, the Hamming bound is the exact capacity curve for $\tau <1/2.$ Somewhat surprisingly, whereas with feedback the capacity curve coincides with the Hamming bound also for $1/2\leq \tau \leq 1$, in this range for localized errors the capacity curve equals 0. Also we give constructions for the models with both, feedback and localized errors.

Cite as

Rudolf Ahlswede, Christian Deppe, and Vladimir Lebedev. Non--binary error correcting codes with noiseless feedback, localized errors, or both. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{ahlswede_et_al:DagSemProc.06201.4,
  author =	{Ahlswede, Rudolf and Deppe, Christian and Lebedev, Vladimir},
  title =	{{Non--binary error correcting codes with noiseless feedback, localized errors, or both}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--4},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.4},
  URN =		{urn:nbn:de:0030-drops-7849},
  doi =		{10.4230/DagSemProc.06201.4},
  annote =	{Keywords: Error-correcting codes, localized errors, feedback, variable length codes}
}
Document
On the Monotonicity of the String Correction Factor for Words with Mismatches

Authors: Alberto Apostolico and Cinzia Pizzi

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
The string correction factor is the term by which the probability of a word $w$ needs to be multiplied in order to account for character changes or ``errors'' occurring in at most $k$ arbitrary positions in that word. The behavior of this factor, as a function of $k$ and of the word length, has implications on the number of candidates that need to be considered and weighted when looking for subwords of a sequence that present unusually recurrent replicas within some bounded number of mismatches. Specifically, it is seen that over intervals of mono- or bi-tonicity for the correction factor, only some of the candidates need be considered. This mitigates the computation and leads to tables of over-represented words that are more compact to represent and inspect. In recent work, expectation and score monotonicity has been established for a number of cases of interest, under {em i.i.d.} probabilistic assumptions. The present paper reviews the cases of bi-tonic behavior for the correction factor, concentrating on the instance in which the question is still open.

Cite as

Alberto Apostolico and Cinzia Pizzi. On the Monotonicity of the String Correction Factor for Words with Mismatches. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{apostolico_et_al:DagSemProc.06201.5,
  author =	{Apostolico, Alberto and Pizzi, Cinzia},
  title =	{{On the Monotonicity of the String Correction Factor for Words with Mismatches}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--9},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.5},
  URN =		{urn:nbn:de:0030-drops-7899},
  doi =		{10.4230/DagSemProc.06201.5},
  annote =	{Keywords: Pattern discovery, Motif, Over-represented word, Monotone score, Correction Factor}
}
Document
Sequence prediction for non-stationary processes

Authors: Daniil Ryabko and Marcus Hutter

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
We address the problem of sequence prediction for nonstationary stochastic processes. In particular, given two measures on the set of one-way infinite sequences over a finite alphabet, consider the question whether one of the measures predicts the other. We find some conditions on local absolute continuity under which prediction is possible.

Cite as

Daniil Ryabko and Marcus Hutter. Sequence prediction for non-stationary processes. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{ryabko_et_al:DagSemProc.06201.6,
  author =	{Ryabko, Daniil and Hutter, Marcus},
  title =	{{Sequence prediction for non-stationary processes}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--12},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.6},
  URN =		{urn:nbn:de:0030-drops-7900},
  doi =		{10.4230/DagSemProc.06201.6},
  annote =	{Keywords: Sequence prediction, probability forecasting, local absolute continuity}
}
Document
Some Results for Identification for Sources and its Extension to Liar Models

Authors: Zlatko Varbanov

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
Let (${cal U}, P$) be a source, where ${cal U} = {1,2,dots,N}, P = {P_1, P_2, dots, P_N}$, and let ${cal C} = {c_1,c_2,dots,c_N}$ be a binary prefix code (PC) for this source with $||c_u||$ as length of $c_u$. Introduce the random variable $U$ with Prob($U=u$) = $p_u$ for $u = 1,2,dots,N$ and the random variable $C$ with $C = c_u = (c_1,c_2,dots,c_{u||c_u||})$ if $U=u$. We use the PC for noiseless identification, that is user $u$ wants to know whether the source output equals $u$, that is, whether $C$ equals $c_u$ or not. The user iteratively checks whether $C$ coincides with $c_u$ in the first, second, etc. letter and stops when the first different letter occurs or when $C = c_u$. What is the expected number $L_{cal C}(P,u)$ of checkings? In order to calculate this quantity we introduce for the binary tree $T_{cal C}$, whose leaves are the codewords $c_1,c_2,dots,c_N$, the sets of leaves ${cal C}_{ik} (1 leq i leq N; 1 leq k)$, where ${cal C}_{ik} = {c in {cal C}: c$ coincides with $c_i$ exactly until the $k$'th letter of $c_i}$. If $C$ takes a value in ${cal C}_{uk}, 0 leq k leq ||c_u||-1$, the answers are $k$ times "Yes" and 1 time "No". For $C = c_u$ the $$ L_{cal C}(P,u) = sum_{k=0}^{||c_u||-1}P(C in {cal C}_{uk})(k+1) + ||c_u||P_u. $$ For code ${cal C}$,~ $L_{cal C}(P) = max L_{cal C}(P,u)$, $1 geq u geq N$, is the expected number of checkings in the worst case and $L(P) = min L_{cal C}(P)$ is this number for the best code ${cal C}$. Let $P = P^N = {frac{1}{N}, dots, frac{1}{N}}$. We construct a prefix code ${cal C}$ in the following way. In each node (starting at the root) we split the number of remaining codewords in proportion as close as possible to $(frac{1}{2},frac{1}{2})$. It is known that $$ lim_{N ightarrow infty} L_{cal C}(P^N) = 2 $$ (Ahlswede, Balkenhol, Kleinewachter, 2003) We know that $L(P) leq 3$ for all $P$ (Ahlswede, Balkenhol, Kleinewachter, 2003). Also, the problem to estimate an universal constant $A = sup L(P)$ for general $P = (P_1,dots, P_N)$ was stated (Ahlswede, 2004). We compute this constant for uniform distribution and this code ${cal C}$. $$ sup_N L_{cal C}(P^N) = 2+frac{log_2(N-1)-2}{N} $$ Also, we consider the average number of checkings, if code ${cal C}$ is used: $ L_{cal C}(P,P) = sum P_u L_{cal C}(P,u)$, for ${u in {cal U}}$. We calculate the exact values of $L_{cal C}(P^N)$ and $L_{cal C}(P^N,P^N)$ for some $N$. Other problem is the extension of identification for sources to liar models. We obtain a upper bound for the expected number of checkings $L_{cal C}(P^N;e)$, where $e$ is the maximum number of lies. $$ L_{cal C}(P^N;e) leq M_{cal C}(P^N;e) = (e+1)L_{cal C}(P^N) + e; ~~ lim_{N ightarrow infty} M_{cal C}(P^N;e) = 3e+2 $$

Cite as

Zlatko Varbanov. Some Results for Identification for Sources and its Extension to Liar Models. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{varbanov:DagSemProc.06201.8,
  author =	{Varbanov, Zlatko},
  title =	{{Some Results for Identification for Sources and its Extension to Liar Models}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--4},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.8},
  URN =		{urn:nbn:de:0030-drops-7820},
  doi =		{10.4230/DagSemProc.06201.8},
  annote =	{Keywords: Identification for sources, lies, prefix code}
}
Document
Suballowable sequences of permutations

Authors: Andrei Asinowski

Published in: Dagstuhl Seminar Proceedings, Volume 6201, Combinatorial and Algorithmic Foundations of Pattern and Association Discovery (2006)


Abstract
We discuss a notion of "allowable sequence of permutations" and show a few combinatorial results and geometric applications.

Cite as

Andrei Asinowski. Suballowable sequences of permutations. In Combinatorial and Algorithmic Foundations of Pattern and Association Discovery. Dagstuhl Seminar Proceedings, Volume 6201, pp. 1-2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2006)


Copy BibTex To Clipboard

@InProceedings{asinowski:DagSemProc.06201.9,
  author =	{Asinowski, Andrei},
  title =	{{Suballowable sequences of permutations}},
  booktitle =	{Combinatorial and Algorithmic Foundations of Pattern and Association Discovery},
  pages =	{1--2},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2006},
  volume =	{6201},
  editor =	{Rudolf Ahlswede and Alberto Apostolico and Vladimir I. Levenshtein},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.06201.9},
  URN =		{urn:nbn:de:0030-drops-7833},
  doi =		{10.4230/DagSemProc.06201.9},
  annote =	{Keywords: Aequences of permutations}
}
  • Refine by Author
  • 3 Ahlswede, Rudolf
  • 3 Apostolico, Alberto
  • 2 Lee, Chin Ho
  • 2 Levenshtein, Vladimir I.
  • 1 Aiswarya, C.
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Bioinformatics
  • 1 Applied computing → Operations research
  • 1 Applied computing → Psychology
  • 1 General and reference → Empirical studies
  • 1 Mathematics of computing → Probabilistic inference problems
  • Show More...

  • Refine by Keyword
  • 2 Data compression
  • 2 genome rearrangements
  • 2 molecular biology
  • 2 pattern discovery
  • 2 pattern matching
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 10 2006
  • 6 2024
  • 1 2007

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail