7 Search Results for "Martínez, Conrado"


Document
Fringe Trees for Random Trees with Given Vertex Degrees

Authors: Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We prove that the number of fringe subtrees, isomorphic to a given tree, in uniformly random trees with given vertex degrees, asymptotically follows a normal distribution. As an application, we establish the same asymptotic normality for random simply generated trees (conditioned Galton-Watson trees). Our approach relies on an extension of Gao and Wormald’s (2004) theorem to the multivariate setting.

Cite as

Gabriel Berzunza Ojeda, Cecilia Holmgren, and Svante Janson. Fringe Trees for Random Trees with Given Vertex Degrees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berzunzaojeda_et_al:LIPIcs.AofA.2024.1,
  author =	{Berzunza Ojeda, Gabriel and Holmgren, Cecilia and Janson, Svante},
  title =	{{Fringe Trees for Random Trees with Given Vertex Degrees}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{1:1--1:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.1},
  URN =		{urn:nbn:de:0030-drops-204369},
  doi =		{10.4230/LIPIcs.AofA.2024.1},
  annote =	{Keywords: Conditioned Galton-Watson trees, fringe trees, simply generated trees, uniformly random trees with given vertex degrees}
}
Document
Bit-Array-Based Alternatives to HyperLogLog

Authors: Svante Janson, Jérémie Lumbroso, and Robert Sedgewick

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We present a family of algorithms for the problem of estimating the number of distinct items in an input stream that are simple to implement and are appropriate for practical applications. Our algorithms are a logical extension of the series of algorithms developed by Flajolet and his coauthors starting in 1983 that culminated in the widely used HyperLogLog algorithm. These algorithms divide the input stream into M substreams and lead to a time-accuracy tradeoff where a constant number of bits per substream are saved to achieve a relative accuracy proportional to 1/√M. Our algorithms use just one or two bits per substream. Their effectiveness is demonstrated by a proof of approximate normality, with explicit expressions for standard errors that inform parameter settings and allow proper quantitative comparisons with other methods. Hypotheses about performance are validated through experiments using a realistic input stream, with the conclusion that our algorithms are more accurate than HyperLogLog when using the same amount of memory, and they use two-thirds as much memory as HyperLogLog to achieve a given accuracy.

Cite as

Svante Janson, Jérémie Lumbroso, and Robert Sedgewick. Bit-Array-Based Alternatives to HyperLogLog. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{janson_et_al:LIPIcs.AofA.2024.5,
  author =	{Janson, Svante and Lumbroso, J\'{e}r\'{e}mie and Sedgewick, Robert},
  title =	{{Bit-Array-Based Alternatives to HyperLogLog}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.5},
  URN =		{urn:nbn:de:0030-drops-204402},
  doi =		{10.4230/LIPIcs.AofA.2024.5},
  annote =	{Keywords: Cardinality estimation, sketching, Hyperloglog}
}
Document
On the Number of Distinct Fringe Subtrees in Binary Search Trees

Authors: Stephan Wagner

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
A fringe subtree of a rooted tree is a subtree that consists of a vertex and all its descendants. The number of distinct fringe subtrees in random trees has been studied by several authors, notably because of its connection to tree compaction algorithms. Here, we obtain a very precise result for binary search trees: it is shown that the number of distinct fringe subtrees in a binary search tree with n leaves is asymptotically equal to (c₁n)/(log n) for a constant c₁ ≈ 2.4071298335, both in expectation and with high probability. This was previously shown to be a lower bound, our main contribution is to prove a matching upper bound. The method is quite general and can also be applied to similar problems for other tree models.

Cite as

Stephan Wagner. On the Number of Distinct Fringe Subtrees in Binary Search Trees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 13:1-13:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wagner:LIPIcs.AofA.2024.13,
  author =	{Wagner, Stephan},
  title =	{{On the Number of Distinct Fringe Subtrees in Binary Search Trees}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{13:1--13:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.13},
  URN =		{urn:nbn:de:0030-drops-204482},
  doi =		{10.4230/LIPIcs.AofA.2024.13},
  annote =	{Keywords: Fringe subtrees, binary search trees, tree compression, minimal DAG, asymptotics}
}
Document
Partial Match Queries in Quad- K-d Trees

Authors: Amalia Duch and Conrado Martínez

Published in: LIPIcs, Volume 225, 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)


Abstract
Quad-K-d trees [Bereckzy et al., 2014] are a generalization of several well-known hierarchical K-dimensional data structures. They were introduced to provide a unified framework for the analysis of associative queries and to investigate the trade-offs between the cost of different operations and the memory needs (each node of a quad-K-d tree has arity 2^m for some m, 1 ≤ m ≤ K). Indeed, we consider here partial match - one of the fundamental associative queries - for several families of quad-K-d trees including, among others, relaxed K-d trees and quadtrees. In particular, we prove that the expected cost of a random partial match P̂_n that has s out of K specified coordinates in a random quad-K-d tree of size n is P̂_n ∼ β⋅ n^α where α and β are constants given in terms of K and s as well as additional parameters that characterize the specific family of quad-K-d trees under consideration. Additionally, we derive a precise asymptotic estimate for the main order term of P_{n,𝐪} - the expected cost of a fixed partial match in a random quad-K-d tree of size n. The techniques and procedures used to derive the mentioned costs extend those already successfully applied to derive analogous results in quadtrees and relaxed K-d trees; our results show that the previous results are just particular cases, and states the validity of the conjecture made in [Duch et al., 2016] to a wider variety of multidimensional data structures.

Cite as

Amalia Duch and Conrado Martínez. Partial Match Queries in Quad- K-d Trees. In 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 225, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{duch_et_al:LIPIcs.AofA.2022.8,
  author =	{Duch, Amalia and Mart{\'\i}nez, Conrado},
  title =	{{Partial Match Queries in Quad- K-d Trees}},
  booktitle =	{33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-230-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{225},
  editor =	{Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.8},
  URN =		{urn:nbn:de:0030-drops-160949},
  doi =		{10.4230/LIPIcs.AofA.2022.8},
  annote =	{Keywords: Quadtree, Partial match queries, Associative queries, Multidimensional search, Analysis of algorithms}
}
Document
Affirmative Sampling: Theory and Applications

Authors: Jérémie Lumbroso and Conrado Martínez

Published in: LIPIcs, Volume 225, 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)


Abstract
Affirmative Sampling is a practical and efficient novel algorithm to obtain random samples of distinct elements from a data stream. Its most salient feature is that the size S of the sample will, on expectation, grow with the (unknown) number n of distinct elements in the data stream. As any distinct element has the same probability to be sampled, and the sample size is greater when the "diversity" (the number of distinct elements) is greater, the samples that Affirmative Sampling delivers are more representative than those produced by any scheme where the sample size is fixed a priori - hence its name. Our algorithm is straightforward to implement, and several implementations already exist.

Cite as

Jérémie Lumbroso and Conrado Martínez. Affirmative Sampling: Theory and Applications. In 33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 225, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lumbroso_et_al:LIPIcs.AofA.2022.12,
  author =	{Lumbroso, J\'{e}r\'{e}mie and Mart{\'\i}nez, Conrado},
  title =	{{Affirmative Sampling: Theory and Applications}},
  booktitle =	{33rd International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2022)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-230-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{225},
  editor =	{Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2022.12},
  URN =		{urn:nbn:de:0030-drops-160987},
  doi =		{10.4230/LIPIcs.AofA.2022.12},
  annote =	{Keywords: Data streams, Distinct sampling, Random sampling, Cardinality estimation, Analysis of algorithms}
}
Document
Hypersuccinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures and Range Minima

Authors: J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach Benkner, and Sebastian Wild

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We present a new universal source code for distributions of unlabeled binary and ordinal trees that achieves optimal compression to within lower order terms for all tree sources covered by existing universal codes. At the same time, it supports answering many navigational queries on the compressed representation in constant time on the word-RAM; this is not known to be possible for any existing tree compression method. The resulting data structures, "hypersuccinct trees", hence combine the compression achieved by the best known universal codes with the operation support of the best succinct tree data structures. We apply hypersuccinct trees to obtain a universal compressed data structure for range-minimum queries. It has constant query time and the optimal worst-case space usage of 2n+o(n) bits, but the space drops to 1.736n + o(n) bits on average for random permutations of n elements, and 2lg binom{n}{r} + o(n) for arrays with r increasing runs, respectively. Both results are optimal; the former answers an open problem of Davoodi et al. (2014) and Golin et al. (2016). Compared to prior work on succinct data structures, we do not have to tailor our data structure to specific applications; hypersuccinct trees automatically adapt to the trees at hand. We show that they simultaneously achieve the optimal space usage to within lower order terms for a wide range of distributions over tree shapes, including: binary search trees (BSTs) generated by insertions in random order / Cartesian trees of random arrays, random fringe-balanced BSTs, binary trees with a given number of binary/unary/leaf nodes, random binary tries generated from memoryless sources, full binary trees, unary paths, as well as uniformly chosen weight-balanced BSTs, AVL trees, and left-leaning red-black trees.

Cite as

J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach Benkner, and Sebastian Wild. Hypersuccinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures and Range Minima. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 70:1-70:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{munro_et_al:LIPIcs.ESA.2021.70,
  author =	{Munro, J. Ian and Nicholson, Patrick K. and Benkner, Louisa Seelbach and Wild, Sebastian},
  title =	{{Hypersuccinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures and Range Minima}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{70:1--70:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.70},
  URN =		{urn:nbn:de:0030-drops-146512},
  doi =		{10.4230/LIPIcs.ESA.2021.70},
  annote =	{Keywords: analysis of algorithms, universal source code, compressed trees, succinct data structure, succinct trees, tree covering, random binary search trees, range-minimum queries}
}
Document
Fixed Partial Match Queries in Quadtrees

Authors: Amalia Duch, Gustavo Lau, and Conrado Martínez

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
Several recent papers in the literature have addressed the analysis of the cost P_{n,q} of partial match search for a given fixed query q - that has s out of K specified coordinates - in different multidimensional data structures. Indeed, detailed asymptotic estimates for the main term in the expected cost P_{n,q} = E {P_{n,q}} in standard and relaxed K-d trees are known (for any dimension K and any number s of specified coordinates), as well as stronger distributional results on P_{n,q} for standard 2-d trees and 2-dimensional quadtrees. In this work we derive a precise asymptotic estimate for the main order term of P_{n,q} in quadtrees, for any values of K and s, 0 < s < K, under the assumption that the limit of P_{n,q}/n^alpha when n -> infty exists, where alpha is the exponent of n in the expected cost of a random partial match query with s specified coordinates in a random K-dimensional quadtree.

Cite as

Amalia Duch, Gustavo Lau, and Conrado Martínez. Fixed Partial Match Queries in Quadtrees. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{duch_et_al:LIPIcs.AofA.2018.20,
  author =	{Duch, Amalia and Lau, Gustavo and Mart{\'\i}nez, Conrado},
  title =	{{Fixed Partial Match Queries in Quadtrees}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.20},
  URN =		{urn:nbn:de:0030-drops-89136},
  doi =		{10.4230/LIPIcs.AofA.2018.20},
  annote =	{Keywords: Quadtree, Partial match queries, Associative queries, Multidimensional search, Analysis of algorithms}
}
  • Refine by Author
  • 3 Martínez, Conrado
  • 2 Duch, Amalia
  • 2 Janson, Svante
  • 2 Lumbroso, Jérémie
  • 1 Benkner, Louisa Seelbach
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Data structures design and analysis
  • 3 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Data compression
  • 2 Theory of computation → Sketching and sampling
  • 1 Mathematics of computing
  • Show More...

  • Refine by Keyword
  • 3 Analysis of algorithms
  • 2 Associative queries
  • 2 Cardinality estimation
  • 2 Multidimensional search
  • 2 Partial match queries
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2024
  • 2 2022
  • 1 2018
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail