9 Search Results for "Schwiegelshohn, Chris"


Document
Track A: Algorithms, Complexity and Games
An O(loglog n)-Approximation for Submodular Facility Location

Authors: Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Submodular Facility Location problem (SFL) we are given a collection of n clients and m facilities in a metric space. A feasible solution consists of an assignment of each client to some facility. For each client, one has to pay the distance to the associated facility. Furthermore, for each facility f to which we assign the subset of clients S^f, one has to pay the opening cost g(S^f), where g() is a monotone submodular function with g(emptyset)=0. SFL is APX-hard since it includes the classical (metric uncapacitated) Facility Location problem (with uniform facility costs) as a special case. Svitkina and Tardos [SODA'06] gave the current-best O(log n) approximation algorithm for SFL. The same authors pose the open problem whether SFL admits a constant approximation and provide such an approximation for a very restricted special case of the problem. We make some progress towards the solution of the above open problem by presenting an O(loglog n) approximation. Our approach is rather flexible and can be easily extended to generalizations and variants of SFL. In more detail, we achieve the same approximation factor for the natural generalizations of SFL where the opening cost of each facility f is of the form p_f + g(S^f) or w_f * g(S^f), where p_f, w_f >= 0 are input values. We also obtain an improved approximation algorithm for the related Universal Stochastic Facility Location problem. In this problem one is given a classical (metric) facility location instance and has to a priori assign each client to some facility. Then a subset of active clients is sampled from some given distribution, and one has to pay (a posteriori) only the connection and opening costs induced by the active clients. The expected opening cost of each facility f can be modelled with a submodular function of the set of clients assigned to f.

Cite as

Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely. An O(loglog n)-Approximation for Submodular Facility Location. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.5,
  author =	{Abbasi, Fateme and Adamczyk, Marek and Bosch-Calvo, Miguel and Byrka, Jaros{\l}aw and Grandoni, Fabrizio and Sornat, Krzysztof and Tinguely, Antoine},
  title =	{{An O(loglog n)-Approximation for Submodular Facility Location}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.5},
  URN =		{urn:nbn:de:0030-drops-201488},
  doi =		{10.4230/LIPIcs.ICALP.2024.5},
  annote =	{Keywords: approximation algorithms, facility location, submodular facility location, universal stochastic facility location}
}
Document
Track A: Algorithms, Complexity and Games
Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces

Authors: Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the well-studied Robust (k,z)-Clustering problem, which generalizes the classic k-Median, k-Means, and k-Center problems and arises in the domains of robust optimization [Anthony, Goyal, Gupta, Nagarajan, Math. Oper. Res. 2010] and in algorithmic fairness [Abbasi, Bhaskara, Venkatasubramanian, 2021 & Ghadiri, Samadi, Vempala, 2022]. Given a constant z ≥ 1, the input to Robust (k,z)-Clustering is a set P of n points in a metric space (M,δ), a weight function w: P → ℝ_{≥ 0} and a positive integer k. Further, each point belongs to one (or more) of the m many different groups S_1,S_2,…,S_m ⊆ P. Our goal is to find a set X of k centers such that max_{i ∈ [m]} ∑_{p ∈ S_i} w(p) δ(p,X)^z is minimized. Complementing recent work on this problem, we give a comprehensive understanding of the parameterized approximability of the problem in geometric spaces where the parameter is the number k of centers. We prove the following results: [(i)] 1) For a universal constant η₀ > 0.0006, we devise a 3^z(1-η₀)-factor FPT approximation algorithm for Robust (k,z)-Clustering in discrete high-dimensional Euclidean spaces where the set of potential centers is finite. This shows that the lower bound of 3^z for general metrics [Goyal, Jaiswal, Inf. Proc. Letters, 2023] no longer holds when the metric has geometric structure. 2) We show that Robust (k,z)-Clustering in discrete Euclidean spaces is (√{3/2}- o(1))-hard to approximate for FPT algorithms, even if we consider the special case k-Center in logarithmic dimensions. This rules out a (1+ε)-approximation algorithm running in time f(k,ε)poly(m,n) (also called efficient parameterized approximation scheme or EPAS), giving a striking contrast with the recent EPAS for the continuous setting where centers can be placed anywhere in the space [Abbasi et al., FOCS'23]. 3) However, we obtain an EPAS for Robust (k,z)-Clustering in discrete Euclidean spaces when the dimension is sublogarithmic (for the discrete problem, earlier work [Abbasi et al., FOCS'23] provides an EPAS only in dimension o(log log n)). Our EPAS works also for metrics of sub-logarithmic doubling dimension.

Cite as

Fateme Abbasi, Sandip Banerjee, Jarosław Byrka, Parinya Chalermsook, Ameet Gadekar, Kamyar Khodamoradi, Dániel Marx, Roohani Sharma, and Joachim Spoerhase. Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.6,
  author =	{Abbasi, Fateme and Banerjee, Sandip and Byrka, Jaros{\l}aw and Chalermsook, Parinya and Gadekar, Ameet and Khodamoradi, Kamyar and Marx, D\'{a}niel and Sharma, Roohani and Spoerhase, Joachim},
  title =	{{Parameterized Approximation For Robust Clustering in Discrete Geometric Spaces}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.6},
  URN =		{urn:nbn:de:0030-drops-201494},
  doi =		{10.4230/LIPIcs.ICALP.2024.6},
  annote =	{Keywords: Clustering, approximation algorithms, parameterized complexity}
}
Document
Track A: Algorithms, Complexity and Games
Fully-Scalable MPC Algorithms for Clustering in High Dimension

Authors: Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We design new parallel algorithms for clustering in high-dimensional Euclidean spaces. These algorithms run in the Massively Parallel Computation (MPC) model, and are fully scalable, meaning that the local memory in each machine may be n^σ for arbitrarily small fixed σ > 0. Importantly, the local memory may be substantially smaller than the number of clusters k, yet all our algorithms are fast, i.e., run in O(1) rounds. We first devise a fast MPC algorithm for O(1)-approximation of uniform Facility Location. This is the first fully-scalable MPC algorithm that achieves O(1)-approximation for any clustering problem in general geometric setting; previous algorithms only provide poly(log n)-approximation or apply to restricted inputs, like low dimension or small number of clusters k; e.g. [Bhaskara and Wijewardena, ICML'18; Cohen-Addad et al., NeurIPS'21; Cohen-Addad et al., ICML'22]. We then build on this Facility Location result and devise a fast MPC algorithm that achieves O(1)-bicriteria approximation for k-Median and for k-Means, namely, it computes (1+ε)k clusters of cost within O(1/ε²)-factor of the optimum for k clusters. A primary technical tool that we introduce, and may be of independent interest, is a new MPC primitive for geometric aggregation, namely, computing for every data point a statistic of its approximate neighborhood, for statistics like range counting and nearest-neighbor search. Our implementation of this primitive works in high dimension, and is based on consistent hashing (aka sparse partition), a technique that was recently used for streaming algorithms [Czumaj et al., FOCS'22].

Cite as

Artur Czumaj, Guichen Gao, Shaofeng H.-C. Jiang, Robert Krauthgamer, and Pavel Veselý. Fully-Scalable MPC Algorithms for Clustering in High Dimension. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czumaj_et_al:LIPIcs.ICALP.2024.50,
  author =	{Czumaj, Artur and Gao, Guichen and Jiang, Shaofeng H.-C. and Krauthgamer, Robert and Vesel\'{y}, Pavel},
  title =	{{Fully-Scalable MPC Algorithms for Clustering in High Dimension}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.50},
  URN =		{urn:nbn:de:0030-drops-201938},
  doi =		{10.4230/LIPIcs.ICALP.2024.50},
  annote =	{Keywords: Massively parallel computing, high dimension, facility location, k-median, k-means}
}
Document
Track A: Algorithms, Complexity and Games
Decremental Matching in General Weighted Graphs

Authors: Aditi Dudeja

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper, we consider the problem of maintaining a (1-ε)-approximate maximum weight matching in a dynamic graph G, while the adversary makes changes to the edges of the graph. In the fully dynamic setting, where both edge insertions and deletions are allowed, Gupta and Peng [Manoj Gupta and Richard Peng, 2013] gave an algorithm for this problem with an update time of Õ_ε(√m). We study a natural relaxation of this problem, namely the decremental model, where the adversary is only allowed to delete edges. For the unweighted version of this problem in general (possibly, non-bipartite) graphs, [Sepehr Assadi et al., 2022] gave a decremental algorithm with update time O_ε(poly(log n)). However, beating Õ_ε(√m) update time remained an open problem for the weighted version in general graphs. In this paper, we bridge the gap between unweighted and weighted general graphs for the decremental setting. We give a O_ε(poly(log n)) update time algorithm that maintains a (1-ε) approximate maximum weight matching under adversarial deletions. Like the decremental algorithm of [Sepehr Assadi et al., 2022], our algorithm is randomized, but works against an adaptive adversary. It also matches the time bound for the unweighted version upto dependencies on ε and a log R factor, where R is the ratio between the maximum and minimum edge weight in G.

Cite as

Aditi Dudeja. Decremental Matching in General Weighted Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 59:1-59:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dudeja:LIPIcs.ICALP.2024.59,
  author =	{Dudeja, Aditi},
  title =	{{Decremental Matching in General Weighted Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{59:1--59:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.59},
  URN =		{urn:nbn:de:0030-drops-202020},
  doi =		{10.4230/LIPIcs.ICALP.2024.59},
  annote =	{Keywords: Weighted Matching, Dynamic Algorithms, Adaptive Adversary}
}
Document
An Empirical Evaluation of k-Means Coresets

Authors: Chris Schwiegelshohn and Omar Ali Sheikh-Omar

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Coresets are among the most popular paradigms for summarizing data. In particular, there exist many high performance coresets for clustering problems such as k-means in both theory and practice. Curiously, there exists no work on comparing the quality of available k-means coresets. In this paper we perform such an evaluation. There currently is no algorithm known to measure the distortion of a candidate coreset. We provide some evidence as to why this might be computationally difficult. To complement this, we propose a benchmark for which we argue that computing coresets is challenging and which also allows us an easy (heuristic) evaluation of coresets. Using this benchmark and real-world data sets, we conduct an exhaustive evaluation of the most commonly used coreset algorithms from theory and practice.

Cite as

Chris Schwiegelshohn and Omar Ali Sheikh-Omar. An Empirical Evaluation of k-Means Coresets. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 84:1-84:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{schwiegelshohn_et_al:LIPIcs.ESA.2022.84,
  author =	{Schwiegelshohn, Chris and Sheikh-Omar, Omar Ali},
  title =	{{An Empirical Evaluation of k-Means Coresets}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{84:1--84:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.84},
  URN =		{urn:nbn:de:0030-drops-170225},
  doi =		{10.4230/LIPIcs.ESA.2022.84},
  annote =	{Keywords: coresets, k-means coresets, evaluation, benchmark}
}
Document
On Finding the Jaccard Center

Authors: Marc Bury and Chris Schwiegelshohn

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We initiate the study of finding the Jaccard center of a given collection N of sets. For two sets X,Y, the Jaccard index is defined as |X\cap Y|/|X\cup Y| and the corresponding distance is 1-|X\cap Y|/|X\cup Y|. The Jaccard center is a set C minimizing the maximum distance to any set of N. We show that the problem is NP-hard to solve exactly, and that it admits a PTAS while no FPTAS can exist unless P = NP. Furthermore, we show that the problem is fixed parameter tractable in the maximum Hamming norm between Jaccard center and any input set. Our algorithms are based on a compression technique similar in spirit to coresets for the Euclidean 1-center problem. In addition, we also show that, contrary to the previously studied median problem by Chierichetti et al. (SODA 2010), the continuous version of the Jaccard center problem admits a simple polynomial time algorithm.

Cite as

Marc Bury and Chris Schwiegelshohn. On Finding the Jaccard Center. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 23:1-23:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bury_et_al:LIPIcs.ICALP.2017.23,
  author =	{Bury, Marc and Schwiegelshohn, Chris},
  title =	{{On Finding the Jaccard Center}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{23:1--23:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.23},
  URN =		{urn:nbn:de:0030-drops-73769},
  doi =		{10.4230/LIPIcs.ICALP.2017.23},
  annote =	{Keywords: Clustering, 1-Center, Jaccard}
}
Document
Planar Matching in Streams Revisited

Authors: Andrew McGregor and Sofya Vorotnikova

Published in: LIPIcs, Volume 60, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)


Abstract
We present data stream algorithms for estimating the size or weight of the maximum matching in low arboricity graphs. A large body of work has focused on improving the constant approximation factor for general graphs when the data stream algorithm is permitted O(n polylog n) space where n is the number of nodes. This space is necessary if the algorithm must return the matching. Recently, Esfandiari et al. (SODA 2015) showed that it was possible to estimate the maximum cardinality of a matching in a planar graph up to a factor of 24+epsilon using O(epsilon^{-2} n^{2/3} polylog n) space. We first present an algorithm (with a simple analysis) that improves this to a factor 5+epsilon using the same space. We also improve upon the previous results for other graphs with bounded arboricity. We then present a factor 12.5 approximation for matching in planar graphs that can be implemented using O(log n) space in the adjacency list data stream model where the stream is a concatenation of the adjacency lists of the graph. The main idea behind our results is finding "local" fractional matchings, i.e., fractional matchings where the value of any edge e is solely determined by the edges sharing an endpoint with e. Our work also improves upon the results for the dynamic data stream model where the stream consists of a sequence of edges being inserted and deleted from the graph. We also extend our results to weighted graphs, improving over the bounds given by Bury and Schwiegelshohn (ESA 2015), via a reduction to the unweighted problem that increases the approximation by at most a factor of two.

Cite as

Andrew McGregor and Sofya Vorotnikova. Planar Matching in Streams Revisited. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 60, pp. 17:1-17:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{mcgregor_et_al:LIPIcs.APPROX-RANDOM.2016.17,
  author =	{McGregor, Andrew and Vorotnikova, Sofya},
  title =	{{Planar Matching in Streams Revisited}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016)},
  pages =	{17:1--17:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-018-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{60},
  editor =	{Jansen, Klaus and Mathieu, Claire and Rolim, Jos\'{e} D. P. and Umans, Chris},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2016.17},
  URN =		{urn:nbn:de:0030-drops-66407},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2016.17},
  annote =	{Keywords: data streams, planar graphs, arboricity, matchings}
}
Document
Diameter and k-Center in Sliding Windows

Authors: Vincent Cohen-Addad, Chris Schwiegelshohn, and Christian Sohler

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
In this paper we develop streaming algorithms for the diameter problem and the k-center clustering problem in the sliding window model. In this model we are interested in maintaining a solution for the N most recent points of the stream. In the diameter problem we would like to maintain two points whose distance approximates the diameter of the point set in the window. Our algorithm computes a (3 + epsilon)-approximation and uses O(1/epsilon*ln(alpha)) memory cells, where alpha is the ratio of the largest and smallest distance and is assumed to be known in advance. We also prove that under reasonable assumptions obtaining a (3 - epsilon)-approximation requires Omega(N1/3) space. For the k-center problem, where the goal is to find k centers that minimize the maximum distance of a point to its nearest center, we obtain a (6 + epsilon)-approximation using O(k/epsilon*ln(alpha)) memory cells and a (4 + epsilon)-approximation for the special case k = 2. We also prove that any algorithm for the 2-center problem that achieves an approximation ratio of less than 4 requires Omega(N^{1/3}) space.

Cite as

Vincent Cohen-Addad, Chris Schwiegelshohn, and Christian Sohler. Diameter and k-Center in Sliding Windows. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 19:1-19:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{cohenaddad_et_al:LIPIcs.ICALP.2016.19,
  author =	{Cohen-Addad, Vincent and Schwiegelshohn, Chris and Sohler, Christian},
  title =	{{Diameter and k-Center in Sliding Windows}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{19:1--19:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.19},
  URN =		{urn:nbn:de:0030-drops-63401},
  doi =		{10.4230/LIPIcs.ICALP.2016.19},
  annote =	{Keywords: Streaming, k-Center, Diameter, Sliding Windows}
}
Document
The Power of Migration for Online Slack Scheduling

Authors: Chris Schwiegelshohn and Uwe Schwiegelshohn

Published in: LIPIcs, Volume 57, 24th Annual European Symposium on Algorithms (ESA 2016)


Abstract
We investigate the power of migration in online scheduling for parallel identical machines. Our objective is to maximize the total processing time of accepted jobs. Once we decide to accept a job, we have to complete it before its deadline d that satisfies d >= (1+epsilon)p + r, where p is the processing time, r the submission time and the slack epsilon > 0 a system parameter. Typically, the hard case arises for small slack epsilon << 1, i.e. for near-tight deadlines. Without migration, a greedy acceptance policy is known to be an optimal deterministic online algorithm with a competitive factor of (1+epsilon)/epsilon (DasGupta and Palis, APPROX 2000). Our first contribution is to show that migrations do not improve the competitive ratio of the greedy acceptance policy, i.e. the competitive ratio remains (1+epsilon)/epsilon for any number of machines. Our main contribution is a deterministic online algorithm with almost tight competitive ratio on any number of machines. For a single machine, the competitive factor matches the optimal bound of (1+epsilon)/epsilon of the greedy acceptance policy. The competitive ratio improves with an increasing number of machines. It approaches (1+epsilon) ln((1+epsilon)/epsilon) as the number of machines converges to infinity. This is an exponential improvement over the greedy acceptance policy for small epsilon. Moreover, we show a matching lower bound on the competitive ratio for deterministic algorithms on any number of machines.

Cite as

Chris Schwiegelshohn and Uwe Schwiegelshohn. The Power of Migration for Online Slack Scheduling. In 24th Annual European Symposium on Algorithms (ESA 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 57, pp. 75:1-75:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{schwiegelshohn_et_al:LIPIcs.ESA.2016.75,
  author =	{Schwiegelshohn, Chris and Schwiegelshohn, Uwe},
  title =	{{The Power of Migration for Online Slack Scheduling}},
  booktitle =	{24th Annual European Symposium on Algorithms (ESA 2016)},
  pages =	{75:1--75:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-015-6},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{57},
  editor =	{Sankowski, Piotr and Zaroliagis, Christos},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2016.75},
  URN =		{urn:nbn:de:0030-drops-64162},
  doi =		{10.4230/LIPIcs.ESA.2016.75},
  annote =	{Keywords: Online scheduling, deadlines, preemption with migration, competitive analysis}
}
  • Refine by Author
  • 4 Schwiegelshohn, Chris
  • 2 Abbasi, Fateme
  • 2 Byrka, Jarosław
  • 1 Adamczyk, Marek
  • 1 Banerjee, Sandip
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Facility location and clustering
  • 2 Theory of computation → Approximation algorithms analysis
  • 1 Information systems → Clustering
  • 1 Theory of computation → Data compression
  • 1 Theory of computation → Dynamic graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 Clustering
  • 2 approximation algorithms
  • 2 facility location
  • 1 1-Center
  • 1 Adaptive Adversary
  • Show More...

  • Refine by Type
  • 9 document

  • Refine by Publication Year
  • 4 2024
  • 3 2016
  • 1 2017
  • 1 2022