4 Search Results for "Sirén, Jouni"


Document
Compressing and Indexing Aligned Readsets

Authors: Travis Gagie, Garance Gourdel, and Giovanni Manzini

Published in: LIPIcs, Volume 201, 21st International Workshop on Algorithms in Bioinformatics (WABI 2021)


Abstract
Compressed full-text indexes are one of the main success stories of bioinformatics data structures but even they struggle to handle some DNA readsets. This may seem surprising since, at least when dealing with short reads from the same individual, the readset will be highly repetitive and, thus, highly compressible. If we are not careful, however, this advantage can be more than offset by two disadvantages: first, since most base pairs are included in at least tens reads each, the uncompressed readset is likely to be at least an order of magnitude larger than the individual’s uncompressed genome; second, these indexes usually pay some space overhead for each string they store, and the total overhead can be substantial when dealing with millions of reads. The most successful compressed full-text indexes for readsets so far are based on the Extended Burrows-Wheeler Transform (EBWT) and use a sorting heuristic to try to reduce the space overhead per read, but they still treat the reads as separate strings and thus may not take full advantage of the readset’s structure. For example, if we have already assembled an individual’s genome from the readset, then we can usually use it to compress the readset well: e.g., we store the gap-coded list of reads' starting positions; we store the list of their lengths, which is often highly compressible; and we store information about the sequencing errors, which are rare with short reads. There is nowhere, however, where we can plug an assembled genome into the EBWT. In this paper we show how to use one or more assembled or partially assembled genome as the basis for a compressed full-text index of its readset. Specifically, we build a labelled tree by taking the assembled genome as a trunk and grafting onto it the reads that align to it, at the starting positions of their alignments. Next, we compute the eXtended Burrows-Wheeler Transform (XBWT) of the resulting labelled tree and build a compressed full-text index on that. Although this index can occasionally return false positives, it is usually much more compact than the alternatives. Following the established practice for datasets with many repetitions, we compare different full-text indices by looking at the number of runs in the transformed strings. For a human Chr19 readset our preliminary experiments show that eliminating separators characters from the EBWT reduces the number of runs by 19%, from 220 million to 178 million, and using the XBWT reduces it by a further 15%, to 150 million.

Cite as

Travis Gagie, Garance Gourdel, and Giovanni Manzini. Compressing and Indexing Aligned Readsets. In 21st International Workshop on Algorithms in Bioinformatics (WABI 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 201, pp. 13:1-13:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gagie_et_al:LIPIcs.WABI.2021.13,
  author =	{Gagie, Travis and Gourdel, Garance and Manzini, Giovanni},
  title =	{{Compressing and Indexing Aligned Readsets}},
  booktitle =	{21st International Workshop on Algorithms in Bioinformatics (WABI 2021)},
  pages =	{13:1--13:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-200-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{201},
  editor =	{Carbone, Alessandra and El-Kebir, Mohammed},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2021.13},
  URN =		{urn:nbn:de:0030-drops-143660},
  doi =		{10.4230/LIPIcs.WABI.2021.13},
  annote =	{Keywords: data compression, compact data structures, FM-index, Burrows-Wheeler Transform, EBWT, XBWT, DNA reads}
}
Document
Haplotype-aware graph indexes

Authors: Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict J. Paten, and Richard Durbin

Published in: LIPIcs, Volume 113, 18th International Workshop on Algorithms in Bioinformatics (WABI 2018)


Abstract
The variation graph toolkit (VG) represents genetic variation as a graph. Each path in the graph is a potential haplotype, though most paths are unlikely recombinations of true haplotypes. We augment the VG model with haplotype information to identify which paths are more likely to be correct. For this purpose, we develop a scalable implementation of the graph extension of the positional Burrows-Wheeler transform. We demonstrate the scalability of the new implementation by indexing the 1000 Genomes Project haplotypes. We also develop an algorithm for simplifying variation graphs for k-mer indexing without losing any k-mers in the haplotypes.

Cite as

Jouni Sirén, Erik Garrison, Adam M. Novak, Benedict J. Paten, and Richard Durbin. Haplotype-aware graph indexes. In 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 113, pp. 4:1-4:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{siren_et_al:LIPIcs.WABI.2018.4,
  author =	{Sir\'{e}n, Jouni and Garrison, Erik and Novak, Adam M. and Paten, Benedict J. and Durbin, Richard},
  title =	{{Haplotype-aware graph indexes}},
  booktitle =	{18th International Workshop on Algorithms in Bioinformatics (WABI 2018)},
  pages =	{4:1--4:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-082-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{113},
  editor =	{Parida, Laxmi and Ukkonen, Esko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2018.4},
  URN =		{urn:nbn:de:0030-drops-93060},
  doi =		{10.4230/LIPIcs.WABI.2018.4},
  annote =	{Keywords: FM-indexes, variation graphs, haplotypes}
}
Document
Wheeler Graphs: Variations on a Theme by Burrows and Wheeler

Authors: Giovanni Manzini

Published in: LIPIcs, Volume 78, 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)


Abstract
The famous Burrows-Wheeler Transform was originally defined for single strings but variations have been developed for sets of strings, labelled trees, de Bruijn graphs, alignments, etc. In this talk we propose a unifying view that includes many of these variations and that we hope will simplify the search for more. Somewhat surprisingly we get our unifying view by considering the Nondeterministic Finite Automata related to different pattern-matching problems. We show that the state graphs associated with these automata have common properties that we summarize with the concept of a Wheeler graph. Using the notion of a Wheeler graph, we show that it is possible to process strings efficiently even if the automaton is nondeterministic. In addition, we show that Wheeler graphs can be compactly represented and traversed using up to three arrays with additional data structures supporting efficient rank and select operations. It turns out that these arrays coincide with, or are substantially equivalent to, the output of many Burrows-Wheeler Transform variants described in the literature. This is joint work with Travis Gagie and Jouni Sirén.

Cite as

Giovanni Manzini. Wheeler Graphs: Variations on a Theme by Burrows and Wheeler. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 78, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{manzini:LIPIcs.CPM.2017.1,
  author =	{Manzini, Giovanni},
  title =	{{Wheeler Graphs: Variations on a Theme by Burrows and Wheeler}},
  booktitle =	{28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-039-2},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{78},
  editor =	{K\"{a}rkk\"{a}inen, Juha and Radoszewski, Jakub and Rytter, Wojciech},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2017.1},
  URN =		{urn:nbn:de:0030-drops-73343},
  doi =		{10.4230/LIPIcs.CPM.2017.1},
  annote =	{Keywords: compressed data structures, pattern matching}
}
Document
Storage and Retrieval of Individual Genomes

Authors: Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki

Published in: Dagstuhl Seminar Proceedings, Volume 8261, Structure-Based Compression of Complex Massive Data (2008)


Abstract
A repetitive sequence collection is one where portions of a emph{base sequence} of length $n$ are repeated many times with small variations, forming a collection of total length $N$. Examples of such collections are version control data and genome sequences of individuals, where the differences can be expressed by lists of basic edit operations. Flexible and efficient data analysis on a such typically huge collection is plausible using suffix trees. However, suffix tree occupies $O(N log N)$ bits, which very soon inhibits in-memory analyses. Recent advances in full-text emph{self-indexing} reduce the space of suffix tree to $O(N log sigma)$ bits, where $sigma$ is the alphabet size. In practice, the space reduction is more than $10$-fold for example on suffix tree of Human Genome. However, this reduction remains a constant factor when more sequences are added to the collection We develop a new self-index suited for the repetitive sequence collection setting. Its expected space requirement depends only on the length $n$ of the base sequence and the number $s$ of variations in its repeated copies. That is, the space reduction is no longer constant, but depends on $N/n$. We believe the structure developed in this work will provide a fundamental basis for storage and retrieval of individual genomes as they become available due to rapid progress in the sequencing technologies.

Cite as

Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and Retrieval of Individual Genomes. In Structure-Based Compression of Complex Massive Data. Dagstuhl Seminar Proceedings, Volume 8261, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{makinen_et_al:DagSemProc.08261.10,
  author =	{M\"{a}kinen, Veli and Navarro, Gonzalo and Sir\'{e}n, Jouni and V\"{a}lim\"{a}ki, Niko},
  title =	{{Storage and Retrieval of Individual Genomes}},
  booktitle =	{Structure-Based Compression of Complex Massive Data},
  pages =	{1--14},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8261},
  editor =	{Stefan B\"{o}ttcher and Markus Lohrey and Sebastian Maneth and Wojcieh Rytter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.08261.10},
  URN =		{urn:nbn:de:0030-drops-16743},
  doi =		{10.4230/DagSemProc.08261.10},
  annote =	{Keywords: Pattern matching, text indexing, compressed data structures, comparative genomics}
}
  • Refine by Author
  • 2 Manzini, Giovanni
  • 2 Sirén, Jouni
  • 1 Durbin, Richard
  • 1 Gagie, Travis
  • 1 Garrison, Erik
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Data compression
  • 1 Applied computing → Computational genomics
  • 1 Theory of computation → Pattern matching

  • Refine by Keyword
  • 2 compressed data structures
  • 1 Burrows-Wheeler Transform
  • 1 DNA reads
  • 1 EBWT
  • 1 FM-index
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2008
  • 1 2017
  • 1 2018
  • 1 2021

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail