7 Search Results for "Waingarten, Erik"


Document
The Composition Complexity of Majority

Authors: Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
We study the complexity of computing majority as a composition of local functions: Maj_n = h(g_1,…,g_m), where each g_j: {0,1}ⁿ → {0,1} is an arbitrary function that queries only k ≪ n variables and h: {0,1}^m → {0,1} is an arbitrary combining function. We prove an optimal lower bound of m ≥ Ω(n/k log k) on the number of functions needed, which is a factor Ω(log k) larger than the ideal m = n/k. We call this factor the composition overhead; previously, no superconstant lower bounds on it were known for majority. Our lower bound recovers, as a corollary and via an entirely different proof, the best known lower bound for bounded-width branching programs for majority (Alon and Maass '86, Babai et al. '90). It is also the first step in a plan that we propose for breaking a longstanding barrier in lower bounds for small-depth boolean circuits. Novel aspects of our proof include sharp bounds on the information lost as computation flows through the inner functions g_j, and the bootstrapping of lower bounds for a multi-output function (Hamming weight) into lower bounds for a single-output one (majority).

Cite as

Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The Composition Complexity of Majority. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 19:1-19:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{lecomte_et_al:LIPIcs.CCC.2022.19,
  author =	{Lecomte, Victor and Ramakrishnan, Prasanna and Tan, Li-Yang},
  title =	{{The Composition Complexity of Majority}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{19:1--19:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.19},
  URN =		{urn:nbn:de:0030-drops-165818},
  doi =		{10.4230/LIPIcs.CCC.2022.19},
  annote =	{Keywords: computational complexity, circuit lower bounds}
}
Document
Track A: Algorithms, Complexity and Games
Finding Monotone Patterns in Sublinear Time, Adaptively

Authors: Omri Ben-Eliezer, Shoham Letzter, and Erik Waingarten

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We investigate adaptive sublinear algorithms for finding monotone patterns in sequential data. Given fixed 2 ≤ k ∈ m N and ε > 0, consider the problem of finding a length-k increasing subsequence in a sequence f : [n] → ℝ, provided that f is ε-far from free of such subsequences. It was shown by Ben-Eliezer et al. [FOCS 2019] that the non-adaptive query complexity of the above task is Θ((log n)^⌊log₂ k⌋). In this work, we break the non-adaptive lower bound, presenting an adaptive algorithm for this problem which makes O(log n) queries. This is optimal, matching the classical Ω(log n) adaptive lower bound by Fischer [Inf. Comp. 2004] for monotonicity testing (which corresponds to the case k = 2). Equivalently, our result implies that testing whether a sequence decomposes into k monotone subsequences can be done with O(log n) queries.

Cite as

Omri Ben-Eliezer, Shoham Letzter, and Erik Waingarten. Finding Monotone Patterns in Sublinear Time, Adaptively. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 17:1-17:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{beneliezer_et_al:LIPIcs.ICALP.2022.17,
  author =	{Ben-Eliezer, Omri and Letzter, Shoham and Waingarten, Erik},
  title =	{{Finding Monotone Patterns in Sublinear Time, Adaptively}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{17:1--17:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.17},
  URN =		{urn:nbn:de:0030-drops-163586},
  doi =		{10.4230/LIPIcs.ICALP.2022.17},
  annote =	{Keywords: property testing, monotone patterns, monotone decomposition, adaptivity}
}
Document
Track A: Algorithms, Complexity and Games
Polylogarithmic Sketches for Clustering

Authors: Moses Charikar and Erik Waingarten

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Given n points in 𝓁_p^d, we consider the problem of partitioning points into k clusters with associated centers. The cost of a clustering is the sum of p-th powers of distances of points to their cluster centers. For p ∈ [1,2], we design sketches of size poly(log(nd),k,1/ε) such that the cost of the optimal clustering can be estimated to within factor 1+ε, despite the fact that the compressed representation does not contain enough information to recover the cluster centers or the partition into clusters. This leads to a streaming algorithm for estimating the clustering cost with space poly(log(nd),k,1/ε). We also obtain a distributed memory algorithm, where the n points are arbitrarily partitioned amongst m machines, each of which sends information to a central party who then computes an approximation of the clustering cost. Prior to this work, no such streaming or distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1,2).

Cite as

Moses Charikar and Erik Waingarten. Polylogarithmic Sketches for Clustering. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 38:1-38:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{charikar_et_al:LIPIcs.ICALP.2022.38,
  author =	{Charikar, Moses and Waingarten, Erik},
  title =	{{Polylogarithmic Sketches for Clustering}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{38:1--38:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.38},
  URN =		{urn:nbn:de:0030-drops-163793},
  doi =		{10.4230/LIPIcs.ICALP.2022.38},
  annote =	{Keywords: sketching, clustering}
}
Document
Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs

Authors: Amit Levi and Erik Waingarten

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
We introduce a new model for testing graph properties which we call the rejection sampling model. We show that testing bipartiteness of n-nodes graphs using rejection sampling queries requires complexity Omega~(n^2). Via reductions from the rejection sampling model, we give three new lower bounds for tolerant testing of Boolean functions of the form f : {0,1}^n -> {0,1}: - Tolerant k-junta testing with non-adaptive queries requires Omega~(k^2) queries. - Tolerant unateness testing requires Omega~(n) queries. - Tolerant unateness testing with non-adaptive queries requires Omega~(n^{3/2}) queries. Given the O~(k^{3/2})-query non-adaptive junta tester of Blais [Eric Blais, 2008], we conclude that non-adaptive tolerant junta testing requires more queries than non-tolerant junta testing. In addition, given the O~(n^{3/4})-query unateness tester of Chen, Waingarten, and Xie [Xi Chen et al., 2017] and the O~(n)-query non-adaptive unateness tester of Baleshzar, Chakrabarty, Pallavoor, Raskhodnikova, and Seshadhri [Roksana Baleshzar et al., 2017], we conclude that tolerant unateness testing requires more queries than non-tolerant unateness testing, in both adaptive and non-adaptive settings. These lower bounds provide the first separation between tolerant and non-tolerant testing for a natural property of Boolean functions.

Cite as

Amit Levi and Erik Waingarten. Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 52:1-52:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{levi_et_al:LIPIcs.ITCS.2019.52,
  author =	{Levi, Amit and Waingarten, Erik},
  title =	{{Lower Bounds for Tolerant Junta and Unateness Testing via Rejection Sampling of Graphs}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{52:1--52:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.52},
  URN =		{urn:nbn:de:0030-drops-101452},
  doi =		{10.4230/LIPIcs.ITCS.2019.52},
  annote =	{Keywords: Property Testing, Juntas, Tolerant Testing, Boolean functions}
}
Document
Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces

Authors: Xi Chen, Rocco A. Servedio, Li-Yang Tan, and Erik Waingarten

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
We give a poly(log(n),1/epsilon)-query adaptive algorithm for testing whether an unknown Boolean function f:{-1, 1}^n -> {-1, 1}, which is promised to be a halfspace, is monotone versus epsilon-far from monotone. Since non-adaptive algorithms are known to require almost Omega(n^{1/2}) queries to test whether an unknown halfspace is monotone versus far from monotone, this shows that adaptivity enables an exponential improvement in the query complexity of monotonicity testing for halfspaces.

Cite as

Xi Chen, Rocco A. Servedio, Li-Yang Tan, and Erik Waingarten. Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 38:1-38:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.APPROX-RANDOM.2017.38,
  author =	{Chen, Xi and Servedio, Rocco A. and Tan, Li-Yang and Waingarten, Erik},
  title =	{{Adaptivity Is Exponentially Powerful for Testing Monotonicity of Halfspaces}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{38:1--38:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.38},
  URN =		{urn:nbn:de:0030-drops-75877},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.38},
  annote =	{Keywords: property testing, linear threshold functions, monotonicity, adaptivity}
}
Document
Settling the Query Complexity of Non-Adaptive Junta Testing

Authors: Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie

Published in: LIPIcs, Volume 79, 32nd Computational Complexity Conference (CCC 2017)


Abstract
We prove that any non-adaptive algorithm that tests whether an unknown Boolean function f is a k-junta or epsilon-far from every k-junta must make ~Omega(k^{3/2}/ epsilon) many queries for a wide range of parameters k and epsilon. Our result dramatically improves previous lower bounds from [BGSMdW13,STW15], and is essentially optimal given Blais's non-adaptive junta tester from [Blais08], which makes ~O(k^{3/2})/epsilon queries. Combined with the adaptive tester of [Blais09] which makes O(k log k + k / epsilon) queries, our result shows that adaptivity enables polynomial savings in query complexity for junta testing.

Cite as

Xi Chen, Rocco A. Servedio, Li-Yang Tan, Erik Waingarten, and Jinyu Xie. Settling the Query Complexity of Non-Adaptive Junta Testing. In 32nd Computational Complexity Conference (CCC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 79, pp. 26:1-26:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CCC.2017.26,
  author =	{Chen, Xi and Servedio, Rocco A. and Tan, Li-Yang and Waingarten, Erik and Xie, Jinyu},
  title =	{{Settling the Query Complexity of Non-Adaptive Junta Testing}},
  booktitle =	{32nd Computational Complexity Conference (CCC 2017)},
  pages =	{26:1--26:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-040-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{79},
  editor =	{O'Donnell, Ryan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2017.26},
  URN =		{urn:nbn:de:0030-drops-75283},
  doi =		{10.4230/LIPIcs.CCC.2017.26},
  annote =	{Keywords: property testing, juntas, query complexity}
}
Document
The Fewest Clues Problem

Authors: Erik D. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, and Scott Aaronson

Published in: LIPIcs, Volume 49, 8th International Conference on Fun with Algorithms (FUN 2016)


Abstract
When analyzing the computational complexity of well-known puzzles, most papers consider the algorithmic challenge of solving a given instance of (a generalized form of) the puzzle. We take a different approach by analyzing the computational complexity of designing a "good" puzzle. We assume a puzzle maker designs part of an instance, but before publishing it, wants to ensure that the puzzle has a unique solution. Given a puzzle, we introduce the FCP (fewest clues problem) version of the problem: Given an instance to a puzzle, what is the minimum number of clues we must add in order to make the instance uniquely solvable? We analyze this question for the Nikoli puzzles Sudoku, Shakashaka, and Akari. Solving these puzzles is NP-complete, and we show their FCP versions are Sigma_2^P-complete. Along the way, we show that the FCP versions of 3SAT, 1-in-3SAT, Triangle Partition, Planar 3SAT, and Latin Square are all Sigma_2^P-complete. We show that even problems in P have difficult FCP versions, sometimes even Sigma_2^P-complete, though "closed under cluing" problems are in the (presumably) smaller class NP; for example, FCP 2SAT is NP-complete.

Cite as

Erik D. Demaine, Fermi Ma, Ariel Schvartzman, Erik Waingarten, and Scott Aaronson. The Fewest Clues Problem. In 8th International Conference on Fun with Algorithms (FUN 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 49, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{demaine_et_al:LIPIcs.FUN.2016.12,
  author =	{Demaine, Erik D. and Ma, Fermi and Schvartzman, Ariel and Waingarten, Erik and Aaronson, Scott},
  title =	{{The Fewest Clues Problem}},
  booktitle =	{8th International Conference on Fun with Algorithms (FUN 2016)},
  pages =	{12:1--12:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-005-7},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{49},
  editor =	{Demaine, Erik D. and Grandoni, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2016.12},
  URN =		{urn:nbn:de:0030-drops-58654},
  doi =		{10.4230/LIPIcs.FUN.2016.12},
  annote =	{Keywords: computational complexity, pencil-and-paper puzzles, hardness reductions}
}
  • Refine by Author
  • 6 Waingarten, Erik
  • 3 Tan, Li-Yang
  • 2 Chen, Xi
  • 2 Servedio, Rocco A.
  • 1 Aaronson, Scott
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 property testing
  • 2 adaptivity
  • 2 computational complexity
  • 1 Boolean functions
  • 1 Juntas
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2022
  • 2 2017
  • 1 2016
  • 1 2019

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail