7 Search Results for "Wang, Chao"


Document
Constraint Based Compiler Optimization for Energy Harvesting Applications

Authors: Yannan Li and Chao Wang

Published in: LIPIcs, Volume 263, 37th European Conference on Object-Oriented Programming (ECOOP 2023)


Abstract
We propose a method for optimizing the energy efficiency of software code running on small computing devices in the Internet of Things (IoT) that are powered exclusively by electricity harvested from ambient energy in the environment. Due to the weak and unstable nature of the energy source, it is challenging for developers to manually optimize the software code to deal with mismatch between the intermittent power supply and the computation demand. Our method overcomes the challenge by using a combination of three techniques. First, we use static program analysis to automatically identify opportunities for precomputation, i.e., computation that may be performed ahead of time as opposed to just in time. Second, we optimize the precomputation policy, i.e., a way to split and reorder steps of a computation task in the original software to match the intermittent power supply while satisfying a variety of system requirements; this is accomplished by formulating energy optimization as a constraint satisfiability problem and then solving the problem using an off-the-shelf SMT solver. Third, we use a state-of-the-art compiler platform (LLVM) to automate the program transformation to ensure that the optimized software code is correct by construction. We have evaluated our method on a large number of benchmark programs, which are C programs implementing secure communication protocols that are popular for energy-harvesting IoT devices. Our experimental results show that the method is efficient in optimizing all benchmark programs. Furthermore, the optimized programs significantly outperform the original programs in terms of energy efficiency and latency, and the overall improvement ranges from 2.3X to 36.7X.

Cite as

Yannan Li and Chao Wang. Constraint Based Compiler Optimization for Energy Harvesting Applications. In 37th European Conference on Object-Oriented Programming (ECOOP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 263, pp. 16:1-16:29, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2023.16,
  author =	{Li, Yannan and Wang, Chao},
  title =	{{Constraint Based Compiler Optimization for Energy Harvesting Applications}},
  booktitle =	{37th European Conference on Object-Oriented Programming (ECOOP 2023)},
  pages =	{16:1--16:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-281-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{263},
  editor =	{Ali, Karim and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2023.16},
  URN =		{urn:nbn:de:0030-drops-182096},
  doi =		{10.4230/LIPIcs.ECOOP.2023.16},
  annote =	{Keywords: Compiler, energy optimization, constraint solving, cryptography, IoT}
}
Document
Swarms of Mobile Robots: Towards Versatility with Safety

Authors: Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
We present Pactole, a formal framework to design and prove the correctness of protocols (or the impossibility of their existence) that target mobile robotic swarms. Unlike previous approaches, our methodology unifies in a single formalism the execution model, the problem specification, the protocol, and its proof of correctness. The Pactole framework makes use of the Coq proof assistant, and is specially targeted at protocol designers and problem specifiers, so that a common unambiguous language is used from the very early stages of protocol development. We stress the underlying framework design principles to enable high expressivity and modularity, and provide concrete examples about how the Pactole framework can be used to tackle actual problems, some previously addressed by the Distributed Computing community, but also new problems, while being certified correct.

Cite as

Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. Swarms of Mobile Robots: Towards Versatility with Safety. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 02:1-02:36, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{courtieu_et_al:LITES.8.2.2,
  author =	{Courtieu, Pierre and Rieg, Lionel and Tixeuil, S\'{e}bastien and Urbain, Xavier},
  title =	{{Swarms of Mobile Robots: Towards Versatility with Safety}},
  booktitle =	{LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems},
  pages =	{02:1--02:36},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Courtieu, Pierre and Rieg, Lionel and Tixeuil, S\'{e}bastien and Urbain, Xavier},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.2.2},
  doi =		{10.4230/LITES.8.2.2},
  annote =	{Keywords: distributed algorithm, mobile autonomous robots, formal proof}
}
Document
Introduction
Introduction to the Special Issue on Embedded Systems for Computer Vision

Authors: Samarjit Chakraborty and Qing Rao

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
We provide a broad overview of some of the current research directions at the intersection of embedded systems and computer vision, in addition to introducing the papers appearing in this special issue. Work at this intersection is steadily growing in importance, especially in the context of autonomous and cyber-physical systems design. Vision-based perception is almost a mandatory component in any autonomous system, but also adds myriad challenges like, how to efficiently implement vision processing algorithms on resource-constrained embedded architectures, and how to verify the functional and timing correctness of these algorithms. Computer vision is also crucial in implementing various smart functionality like security, e.g., using facial recognition, or monitoring events or traffic patterns. Some of these applications are reviewed in this introductory article. The remaining articles featured in this special issue dive into more depth on a few of them.

Cite as

LITES, Volume 8, Issue 1: Special Issue on Embedded Systems for Computer Vision, pp. 0:i-0:viii, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{chakraborty_et_al:LITES.8.1.0,
  author =	{Chakraborty, Samarjit and Rao, Qing},
  title =	{{Introduction to the Special Issue on Embedded Systems for Computer Vision}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{00:1--00:8},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Chakraborty, Samarjit and Rao, Qing},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.0},
  doi =		{10.4230/LITES.8.1.0},
  annote =	{Keywords: Embedded systems, Computer vision, Cyber-physical systems, Computer architecture}
}
Document
Micro- and Macroscopic Road Traffic Analysis using Drone Image Data

Authors: Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch

Published in: LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1


Abstract
The current development in the drone technology, alongside with machine learning based image processing, open new possibilities for various applications. Thus, the market volume is expected to grow rapidly over the next years. The goal of this paper is to demonstrate the capabilities and limitations of drone based image data processing for the purpose of road traffic analysis. In the first part a method for generating microscopic traffic data is proposed. More precisely, the state of vehicles and the resulting trajectories are estimated. The method is validated by conducting experiments with reference sensors and proofs to achieve precise vehicle state estimation results. It is also shown, how the computational effort can be reduced by incorporating the tracking information into a neural network. A discussion on current limitations supplements the findings. By collecting a large number of vehicle trajectories, macroscopic statistics, such as traffic flow and density can be obtained from the data. In the second part, a publicly available drone based data set is analyzed to evaluate the suitability for macroscopic traffic modeling. The results show that the method is well suited for gaining detailed information about macroscopic statistics, such as traffic flow dependent time headway or lane change occurrences. In conclusion, this paper presents methods to exploit the remarkable opportunities of drone based image processing for joint macro- and microscopic traffic analysis.

Cite as

Friedrich Kruber, Eduardo Sánchez Morales, Robin Egolf, Jonas Wurst, Samarjit Chakraborty, and Michael Botsch. Micro- and Macroscopic Road Traffic Analysis using Drone Image Data. In LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision. Leibniz Transactions on Embedded Systems, Volume 8, Issue 1, pp. 02:1-02:27, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kruber_et_al:LITES.8.1.2,
  author =	{Kruber, Friedrich and S\'{a}nchez Morales, Eduardo and Egolf, Robin and Wurst, Jonas and Chakraborty, Samarjit and Botsch, Michael},
  title =	{{Micro- and Macroscopic Road Traffic Analysis using Drone Image Data}},
  booktitle =	{LITES, Volume 8, Issue 1 (2022): Special Issue on Embedded Systems for Computer Vision},
  pages =	{02:1--02:27},
  journal =	{Leibniz Transactions on Embedded Systems},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{1},
  editor =	{Kruber, Friedrich and S\'{a}nchez Morales, Eduardo and Egolf, Robin and Wurst, Jonas and Chakraborty, Samarjit and Botsch, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES.8.1.2},
  doi =		{10.4230/LITES.8.1.2},
  annote =	{Keywords: traffic data analysis, trajectory data, drone image data}
}
Document
GPU Computation of the Euler Characteristic Curve for Imaging Data

Authors: Fan Wang, Hubert Wagner, and Chao Chen

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Persistent homology is perhaps the most popular and useful tool offered by topological data analysis - with point-cloud data being the most common setup. Its older cousin, the Euler characteristic curve (ECC) is less expressive - but far easier to compute. It is particularly suitable for analyzing imaging data, and is commonly used in fields ranging from astrophysics to biomedical image analysis. These fields are embracing GPU computations to handle increasingly large datasets. We therefore propose an optimized GPU implementation of ECC computation for 2D and 3D grayscale images. The goal of this paper is twofold. First, we offer a practical tool, illustrating its performance with thorough experimentation - but also explain its inherent shortcomings. Second, this simple algorithm serves as a perfect backdrop for highlighting basic GPU programming techniques that make our implementation so efficient - and some common pitfalls we avoided. This is intended as a step towards a wider usage of GPU programming in computational geometry and topology software. We find this is particularly important as geometric and topological tools are used in conjunction with modern, GPU-accelerated machine learning frameworks.

Cite as

Fan Wang, Hubert Wagner, and Chao Chen. GPU Computation of the Euler Characteristic Curve for Imaging Data. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 64:1-64:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.SoCG.2022.64,
  author =	{Wang, Fan and Wagner, Hubert and Chen, Chao},
  title =	{{GPU Computation of the Euler Characteristic Curve for Imaging Data}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{64:1--64:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.64},
  URN =		{urn:nbn:de:0030-drops-160724},
  doi =		{10.4230/LIPIcs.SoCG.2022.64},
  annote =	{Keywords: topological data analysis, Euler characteristic, Euler characteristic curve, Betti curve, persistent homology, algorithms, parallel programming, algorithm engineering, GPU programming, imaging data}
}
Document
Checking Linearizability of Concurrent Priority Queues

Authors: Ahmed Bouajjani, Constantin Enea, and Chao Wang

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
Efficient implementations of concurrent objects such as atomic collections are essential to modern computing. Unfortunately their correctness criteria — linearizability with respect to given ADT specifications — are hard to verify. Verifying linearizability is undecidable in general, even on classes of implementations where the usual control-state reachability is decidable. In this work we consider concurrent priority queues which are fundamental to many multi-threaded applications like task scheduling or discrete event simulation, and show that verifying linearizability of such implementations is reducible to control-state reachability. This reduction entails the first decidability results for verifying concurrent priority queues with an unbounded number of threads, and it enables the application of existing safety-verification tools for establishing their correctness.

Cite as

Ahmed Bouajjani, Constantin Enea, and Chao Wang. Checking Linearizability of Concurrent Priority Queues. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 16:1-16:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bouajjani_et_al:LIPIcs.CONCUR.2017.16,
  author =	{Bouajjani, Ahmed and Enea, Constantin and Wang, Chao},
  title =	{{Checking Linearizability of Concurrent Priority Queues}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{16:1--16:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.16},
  URN =		{urn:nbn:de:0030-drops-78079},
  doi =		{10.4230/LIPIcs.CONCUR.2017.16},
  annote =	{Keywords: Concurrency, Linearizability, Model Checking}
}
Document
Multimedia Contribution
Cardiac Trabeculae Segmentation: an Application of Computational Topology (Multimedia Contribution)

Authors: Chao Chen, Dimitris Metaxas, Yusu Wang, and Pengxiang Wu

Published in: LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)


Abstract
In this video, we present a research project on cardiac trabeculae segmentation. Trabeculae are fine muscle columns within human ventricles whose both ends are attached to the wall. Extracting these structures are very challenging even with state-of-the-art image segmentation techniques. We observed that these structures form natural topological handles. Based on such observation, we developed a topological approach, which employs advanced computational topology methods and achieve high quality segmentation results.

Cite as

Chao Chen, Dimitris Metaxas, Yusu Wang, and Pengxiang Wu. Cardiac Trabeculae Segmentation: an Application of Computational Topology (Multimedia Contribution). In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 65:1-65:4, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.SoCG.2017.65,
  author =	{Chen, Chao and Metaxas, Dimitris and Wang, Yusu and Wu, Pengxiang},
  title =	{{Cardiac Trabeculae Segmentation: an Application of Computational Topology}},
  booktitle =	{33rd International Symposium on Computational Geometry (SoCG 2017)},
  pages =	{65:1--65:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-038-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{77},
  editor =	{Aronov, Boris and Katz, Matthew J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.65},
  URN =		{urn:nbn:de:0030-drops-72429},
  doi =		{10.4230/LIPIcs.SoCG.2017.65},
  annote =	{Keywords: image segmentation, trabeculae, persistent homology, homology localization}
}
  • Refine by Author
  • 2 Chakraborty, Samarjit
  • 2 Chen, Chao
  • 2 Wang, Chao
  • 1 Botsch, Michael
  • 1 Bouajjani, Ahmed
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • 1 Computing methodologies → Machine learning
  • 1 Mathematics of computing → Combinatorial algorithms
  • 1 Software and its engineering → Compilers
  • 1 Software and its engineering → Formal methods
  • Show More...

  • Refine by Keyword
  • 2 persistent homology
  • 1 Betti curve
  • 1 Compiler
  • 1 Computer architecture
  • 1 Computer vision
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 4 2022
  • 2 2017
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail