22 Search Results for "Fr�nzle, Martin"


Document
Synergizing Theory and Practice of Automated Algorithm Design for Optimization (Dagstuhl Seminar 23332)

Authors: Diederick Vermetten, Martin S. Krejca, Marius Lindauer, Manuel López-Ibáñez, and Katherine M. Malan

Published in: Dagstuhl Reports, Volume 13, Issue 8 (2024)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23332, which focused on automated algorithm design (AAD) for optimization. AAD aims to propose good algorithms and/or parameters thereof for optimization problems in an automated fashion, instead of forcing this decision on the user. As such, AAD is applicable in a variety of domains. The seminar brought together a diverse, international set of researchers from AAD and closely related fields. Especially, we invited people from both the empirical and the theoretical domain. A main goal of the seminar was to enable vivid discussions between these two groups in order to synergize the knowledge from either domain, thus advancing the area of AAD as a whole, and to reduce the gap between theory and practice. Over the course of the seminar, a good mix of breakout sessions and talks took place, which were very well received and which we detail in this report. Efforts to synergize theory and practice bore some fruit, and other important aspects of AAD were highlighted and discussed. Overall, the seminar was a huge success.

Cite as

Diederick Vermetten, Martin S. Krejca, Marius Lindauer, Manuel López-Ibáñez, and Katherine M. Malan. Synergizing Theory and Practice of Automated Algorithm Design for Optimization (Dagstuhl Seminar 23332). In Dagstuhl Reports, Volume 13, Issue 8, pp. 46-70, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{vermetten_et_al:DagRep.13.8.46,
  author =	{Vermetten, Diederick and Krejca, Martin S. and Lindauer, Marius and L\'{o}pez-Ib\'{a}\~{n}ez, Manuel and Malan, Katherine M.},
  title =	{{Synergizing Theory and Practice of Automated Algorithm Design for Optimization (Dagstuhl Seminar 23332)}},
  pages =	{46--70},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2024},
  volume =	{13},
  number =	{8},
  editor =	{Vermetten, Diederick and Krejca, Martin S. and Lindauer, Marius and L\'{o}pez-Ib\'{a}\~{n}ez, Manuel and Malan, Katherine M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.8.46},
  URN =		{urn:nbn:de:0030-drops-198128},
  doi =		{10.4230/DagRep.13.8.46},
  annote =	{Keywords: automated algorithm design, hyper-parameter tuning, parameter control, heuristic optimization, black-box optimization}
}
Document
Learning-Augmented Online TSP on Rings, Trees, Flowers and (Almost) Everywhere Else

Authors: Evripidis Bampis, Bruno Escoffier, Themis Gouleakis, Niklas Hahn, Kostas Lakis, Golnoosh Shahkarami, and Michalis Xefteris

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the Online Traveling Salesperson Problem (OLTSP) with predictions. In OLTSP, a sequence of initially unknown requests arrive over time at points (locations) of a metric space. The goal is, starting from a particular point of the metric space (the origin), to serve all these requests while minimizing the total time spent. The server moves with unit speed or is "waiting" (zero speed) at some location. We consider two variants: in the open variant, the goal is achieved when the last request is served. In the closed one, the server additionally has to return to the origin. We adopt a prediction model, introduced for OLTSP on the line [Gouleakis et al., 2023], in which the predictions correspond to the locations of the requests and extend it to more general metric spaces. We first propose an oracle-based algorithmic framework, inspired by previous work [Bampis et al., 2023]. This framework allows us to design online algorithms for general metric spaces that provide competitive ratio guarantees which, given perfect predictions, beat the best possible classical guarantee (consistency). Moreover, they degrade gracefully along with the increase in error (smoothness), but always within a constant factor of the best known competitive ratio in the classical case (robustness). Having reduced the problem to designing suitable efficient oracles, we describe how to achieve this for general metric spaces as well as specific metric spaces (rings, trees and flowers), the resulting algorithms being tractable in the latter case. The consistency guarantees of our algorithms are tight in almost all cases, and their smoothness guarantees only suffer a linear dependency on the error, which we show is necessary. Finally, we provide robustness guarantees improving previous results.

Cite as

Evripidis Bampis, Bruno Escoffier, Themis Gouleakis, Niklas Hahn, Kostas Lakis, Golnoosh Shahkarami, and Michalis Xefteris. Learning-Augmented Online TSP on Rings, Trees, Flowers and (Almost) Everywhere Else. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bampis_et_al:LIPIcs.ESA.2023.12,
  author =	{Bampis, Evripidis and Escoffier, Bruno and Gouleakis, Themis and Hahn, Niklas and Lakis, Kostas and Shahkarami, Golnoosh and Xefteris, Michalis},
  title =	{{Learning-Augmented Online TSP on Rings, Trees, Flowers and (Almost) Everywhere Else}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.12},
  URN =		{urn:nbn:de:0030-drops-186659},
  doi =		{10.4230/LIPIcs.ESA.2023.12},
  annote =	{Keywords: TSP, Online algorithms, Learning-augmented algorithms, Algorithms with predictions, Competitive analysis}
}
Document
On k-Means for Segments and Polylines

Authors: Sergio Cabello and Panos Giannopoulos

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the problem of k-means clustering in the space of straight-line segments in ℝ² under the Hausdorff distance. For this problem, we give a (1+ε)-approximation algorithm that, for an input of n segments, for any fixed k, and with constant success probability, runs in time O(n + ε^{-O(k)} + ε^{-O(k)} ⋅ log^O(k) (ε^{-1})). The algorithm has two main ingredients. Firstly, we express the k-means objective in our metric space as a sum of algebraic functions and use the optimization technique of Vigneron [Antoine Vigneron, 2014] to approximate its minimum. Secondly, we reduce the input size by computing a small size coreset using the sensitivity-based sampling framework by Feldman and Langberg [Dan Feldman and Michael Langberg, 2011; Feldman et al., 2020]. Our results can be extended to polylines of constant complexity with a running time of O(n + ε^{-O(k)}).

Cite as

Sergio Cabello and Panos Giannopoulos. On k-Means for Segments and Polylines. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 28:1-28:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cabello_et_al:LIPIcs.ESA.2023.28,
  author =	{Cabello, Sergio and Giannopoulos, Panos},
  title =	{{On k-Means for Segments and Polylines}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{28:1--28:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.28},
  URN =		{urn:nbn:de:0030-drops-186812},
  doi =		{10.4230/LIPIcs.ESA.2023.28},
  annote =	{Keywords: k-means clustering, segments, polylines, Hausdorff distance, Fr\'{e}chet mean}
}
Document
Revisiting the Random Subset Sum Problem

Authors: Arthur Carvalho Walraven Da Cunha, Francesco d'Amore, Frédéric Giroire, Hicham Lesfari, Emanuele Natale, and Laurent Viennot

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
The average properties of the well-known Subset Sum Problem can be studied by means of its randomised version, where we are given a target value z, random variables X_1, …, X_n, and an error parameter ε > 0, and we seek a subset of the X_is whose sum approximates z up to error ε. In this setup, it has been shown that, under mild assumptions on the distribution of the random variables, a sample of size 𝒪(log(1/ε)) suffices to obtain, with high probability, approximations for all values in [-1/2, 1/2]. Recently, this result has been rediscovered outside the algorithms community, enabling meaningful progress in other fields. In this work, we present an alternative proof for this theorem, with a more direct approach and resourcing to more elementary tools.

Cite as

Arthur Carvalho Walraven Da Cunha, Francesco d'Amore, Frédéric Giroire, Hicham Lesfari, Emanuele Natale, and Laurent Viennot. Revisiting the Random Subset Sum Problem. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 37:1-37:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dacunha_et_al:LIPIcs.ESA.2023.37,
  author =	{Da Cunha, Arthur Carvalho Walraven and d'Amore, Francesco and Giroire, Fr\'{e}d\'{e}ric and Lesfari, Hicham and Natale, Emanuele and Viennot, Laurent},
  title =	{{Revisiting the Random Subset Sum Problem}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{37:1--37:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.37},
  URN =		{urn:nbn:de:0030-drops-186905},
  doi =		{10.4230/LIPIcs.ESA.2023.37},
  annote =	{Keywords: Random subset sum, Randomised method, Subset-sum, Combinatorics}
}
Document
Engineering Fast Algorithms for the Bottleneck Matching Problem

Authors: Ioannis Panagiotas, Grégoire Pichon, Somesh Singh, and Bora Uçar

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We investigate the maximum bottleneck matching problem in bipartite graphs. Given a bipartite graph with nonnegative edge weights, the problem is to find a maximum cardinality matching in which the minimum weight of an edge is the maximum. To the best of our knowledge, there are two widely used solvers for this problem based on two different approaches. There exists a third known approach in the literature, which seems inferior to those two which is presumably why there is no implementation of it. We take this third approach, make theoretical observations to improve its behavior, and implement the improved method. Experiments with the existing two solvers show that their run time can be too high to be useful in many interesting cases. Furthermore, their performance is not predictable, and slight perturbations of the input graph lead to considerable changes in the run time. On the other hand, the proposed solver’s performance is much more stable; it is almost always faster than or comparable to the two existing solvers, and its run time always remains low.

Cite as

Ioannis Panagiotas, Grégoire Pichon, Somesh Singh, and Bora Uçar. Engineering Fast Algorithms for the Bottleneck Matching Problem. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 87:1-87:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{panagiotas_et_al:LIPIcs.ESA.2023.87,
  author =	{Panagiotas, Ioannis and Pichon, Gr\'{e}goire and Singh, Somesh and U\c{c}ar, Bora},
  title =	{{Engineering Fast Algorithms for the Bottleneck Matching Problem}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{87:1--87:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.87},
  URN =		{urn:nbn:de:0030-drops-187406},
  doi =		{10.4230/LIPIcs.ESA.2023.87},
  annote =	{Keywords: bipartite graphs, assignment problem, matching}
}
Document
Improved Algorithms for Distance Selection and Related Problems

Authors: Haitao Wang and Yiming Zhao

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
In this paper, we propose new techniques for solving geometric optimization problems involving interpoint distances of a point set in the plane. Given a set P of n points in the plane and an integer 1 ≤ k ≤ binom(n,2), the distance selection problem is to find the k-th smallest interpoint distance among all pairs of points of P. The previously best deterministic algorithm solves the problem in O(n^{4/3} log² n) time [Katz and Sharir, 1997]. In this paper, we improve their algorithm to O(n^{4/3} log n) time. Using similar techniques, we also give improved algorithms on both the two-sided and the one-sided discrete Fréchet distance with shortcuts problem for two point sets in the plane. For the two-sided problem (resp., one-sided problem), we improve the previous work [Avraham, Filtser, Kaplan, Katz, and Sharir, 2015] by a factor of roughly log²(m+n) (resp., (m+n)^ε), where m and n are the sizes of the two input point sets, respectively. Other problems whose solutions can be improved by our techniques include the reverse shortest path problems for unit-disk graphs. Our techniques are quite general and we believe they will find many other applications in future.

Cite as

Haitao Wang and Yiming Zhao. Improved Algorithms for Distance Selection and Related Problems. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 101:1-101:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{wang_et_al:LIPIcs.ESA.2023.101,
  author =	{Wang, Haitao and Zhao, Yiming},
  title =	{{Improved Algorithms for Distance Selection and Related Problems}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{101:1--101:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.101},
  URN =		{urn:nbn:de:0030-drops-187544},
  doi =		{10.4230/LIPIcs.ESA.2023.101},
  annote =	{Keywords: Geometric optimization, distance selection, Fr\'{e}chet distance, range searching}
}
Document
Introduction
Introduction to the Special Issue on Distributed Hybrid Systems

Authors: Alessandro Abate, Uli Fahrenberg, and Martin Fränzle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
This special issue contains seven papers within the broad subject of Distributed Hybrid Systems, that is, systems combining hybrid discrete-continuous state spaces with elements of concurrency and logical or spatial distribution. It follows up on several workshops on the same theme which were held between 2017 and 2019 and organized by the editors of this volume. The first of these workshops was held in Aalborg, Denmark, in August 2017 and associated with the MFCS conference. It featured invited talks by Alessandro Abate, Martin Fränzle, Kim G. Larsen, Martin Raussen, and Rafael Wisniewski. The second workshop was held in Palaiseau, France, in July 2018, with invited talks by Luc Jaulin, Thao Dang, Lisbeth Fajstrup, Emmanuel Ledinot, and André Platzer. The third workshop was held in Amsterdam, The Netherlands, in August 2019, associated with the CONCUR conference. It featured a special theme on distributed robotics and had invited talks by Majid Zamani, Hervé de Forges, and Xavier Urbain. The vision and purpose of the DHS workshops was to connect researchers working in real-time systems, hybrid systems, control theory, formal verification, distributed computing, and concurrency theory, in order to advance the subject of distributed hybrid systems. Such systems are abundant and often safety-critical, but ensuring their correct functioning can in general be challenging. The investigation of their dynamics by analysis tools from the aforementioned domains remains fragmentary, providing the rationale behind the workshops: it was conceived that convergence and interaction of theories, methods, and tools from these different areas was needed in order to advance the subject.

Cite as

LITES, Volume 8, Issue 2: Special Issue on Distributed Hybrid Systems, pp. 0:i-0:iii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{abate_et_al:LITES.8.2.0,
  author =	{Abate, Alessandro and Fahrenberg, Uli and Fr\"{a}nzle, Martin},
  title =	{{Introduction to the Special Issue on Distributed Hybrid Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{00:1--00:3},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LITES.8.2.0},
  doi =		{10.4230/LITES.8.2.0},
  annote =	{Keywords: Distributed hybrid systems}
}
Document
Swarms of Mobile Robots: Towards Versatility with Safety

Authors: Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
We present Pactole, a formal framework to design and prove the correctness of protocols (or the impossibility of their existence) that target mobile robotic swarms. Unlike previous approaches, our methodology unifies in a single formalism the execution model, the problem specification, the protocol, and its proof of correctness. The Pactole framework makes use of the Coq proof assistant, and is specially targeted at protocol designers and problem specifiers, so that a common unambiguous language is used from the very early stages of protocol development. We stress the underlying framework design principles to enable high expressivity and modularity, and provide concrete examples about how the Pactole framework can be used to tackle actual problems, some previously addressed by the Distributed Computing community, but also new problems, while being certified correct.

Cite as

Pierre Courtieu, Lionel Rieg, Sébastien Tixeuil, and Xavier Urbain. Swarms of Mobile Robots: Towards Versatility with Safety. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 02:1-02:36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{courtieu_et_al:LITES.8.2.2,
  author =	{Courtieu, Pierre and Rieg, Lionel and Tixeuil, S\'{e}bastien and Urbain, Xavier},
  title =	{{Swarms of Mobile Robots: Towards Versatility with Safety}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{02:1--02:36},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LITES.8.2.2},
  doi =		{10.4230/LITES.8.2.2},
  annote =	{Keywords: distributed algorithm, mobile autonomous robots, formal proof}
}
Document
Bayesian Hybrid Automata: A Formal Model of Justified Belief in Interacting Hybrid Systems Subject to Imprecise Observation

Authors: Paul Kröger and Martin Fränzle

Published in: LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2


Abstract
Hybrid discrete-continuous system dynamics arises when discrete actions, e.g. by a decision algorithm, meet continuous behaviour, e.g. due to physical processes and continuous control. A natural domain of such systems are emerging smart technologies which add elements of intelligence, co-operation, and adaptivity to physical entities, enabling them to interact with each other and with humans as systems of (human-)cyber-physical systems or (H)CPSes.Various flavours of hybrid automata have been suggested as a means to formally analyse CPS dynamics. In a previous article, we demonstrated that all these variants of hybrid automata provide inaccurate, in the sense of either overly pessimistic or overly optimistic, verdicts for engineered systems operating under imprecise observation of their environment due to, e.g., measurement error. We suggested a revised formal model, called Bayesian hybrid automata, that is able to represent state tracking and estimation in hybrid systems and thereby enhances precision of verdicts obtained from the model in comparison to traditional model variants.In this article, we present an extended definition of Bayesian hybrid automata which incorporates a new class of guard and invariant functions that allow to evaluate traditional guards and invariants over probability distributions. The resulting framework allows to model observers with knowledge about the control strategy of an observed agent but with imprecise estimates of the data on which the control decisions are based.

Cite as

Paul Kröger and Martin Fränzle. Bayesian Hybrid Automata: A Formal Model of Justified Belief in Interacting Hybrid Systems Subject to Imprecise Observation. In LITES, Volume 8, Issue 2 (2022): Special Issue on Distributed Hybrid Systems. Leibniz Transactions on Embedded Systems, Volume 8, Issue 2, pp. 05:1-05:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{kroger_et_al:LITES.8.2.5,
  author =	{Kr\"{o}ger, Paul and Fr\"{a}nzle, Martin},
  title =	{{Bayesian Hybrid Automata: A Formal Model of Justified Belief in Interacting Hybrid Systems Subject to Imprecise Observation}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{05:1--05:27},
  ISSN =	{2199-2002},
  year =	{2022},
  volume =	{8},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LITES.8.2.5},
  doi =		{10.4230/LITES.8.2.5},
  annote =	{Keywords: }
}
Document
Isomorphisms Between STRIPS Problems and Sub-Problems

Authors: Martin C. Cooper, Arnaud Lequen, and Frédéric Maris

Published in: LIPIcs, Volume 235, 28th International Conference on Principles and Practice of Constraint Programming (CP 2022)


Abstract
Determining whether two STRIPS planning instances are isomorphic is the simplest form of comparison between planning instances. It is also a particular case of the problem concerned with finding an isomorphism between a planning instance P and a sub-instance of another instance P'. One application of such an isomorphism is to efficiently produce a compiled form containing all solutions to P from a compiled form containing all solutions to P'. In this paper, we study the complexity of both problems. We show that the former is GI-complete, and can thus be solved, in theory, in quasi-polynomial time. While we prove the latter to be NP-complete, we propose an algorithm to build an isomorphism, when possible. We report extensive experimental trials on benchmark problems which demonstrate conclusively that applying constraint propagation in preprocessing can greatly improve the efficiency of a SAT solver.

Cite as

Martin C. Cooper, Arnaud Lequen, and Frédéric Maris. Isomorphisms Between STRIPS Problems and Sub-Problems. In 28th International Conference on Principles and Practice of Constraint Programming (CP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 235, pp. 13:1-13:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cooper_et_al:LIPIcs.CP.2022.13,
  author =	{Cooper, Martin C. and Lequen, Arnaud and Maris, Fr\'{e}d\'{e}ric},
  title =	{{Isomorphisms Between STRIPS Problems and Sub-Problems}},
  booktitle =	{28th International Conference on Principles and Practice of Constraint Programming (CP 2022)},
  pages =	{13:1--13:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-240-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{235},
  editor =	{Solnon, Christine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2022.13},
  URN =		{urn:nbn:de:0030-drops-166426},
  doi =		{10.4230/LIPIcs.CP.2022.13},
  annote =	{Keywords: planning, isomorphism, complexity, constraint propagation}
}
Document
The Impact of Geometry on Monochrome Regions in the Flip Schelling Process

Authors: Thomas Bläsius, Tobias Friedrich, Martin S. Krejca, and Louise Molitor

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
Schelling’s classical segregation model gives a coherent explanation for the wide-spread phenomenon of residential segregation. We introduce an agent-based saturated open-city variant, the Flip Schelling Process (FSP), in which agents, placed on a graph, have one out of two types and, based on the predominant type in their neighborhood, decide whether to change their types; similar to a new agent arriving as soon as another agent leaves the vertex. We investigate the probability that an edge {u,v} is monochrome, i.e., that both vertices u and v have the same type in the FSP, and we provide a general framework for analyzing the influence of the underlying graph topology on residential segregation. In particular, for two adjacent vertices, we show that a highly decisive common neighborhood, i.e., a common neighborhood where the absolute value of the difference between the number of vertices with different types is high, supports segregation and, moreover, that large common neighborhoods are more decisive. As an application, we study the expected behavior of the FSP on two common random graph models with and without geometry: (1) For random geometric graphs, we show that the existence of an edge {u,v} makes a highly decisive common neighborhood for u and v more likely. Based on this, we prove the existence of a constant c > 0 such that the expected fraction of monochrome edges after the FSP is at least 1/2 + c. (2) For Erdős-Rényi graphs we show that large common neighborhoods are unlikely and that the expected fraction of monochrome edges after the FSP is at most 1/2 + o(1). Our results indicate that the cluster structure of the underlying graph has a significant impact on the obtained segregation strength.

Cite as

Thomas Bläsius, Tobias Friedrich, Martin S. Krejca, and Louise Molitor. The Impact of Geometry on Monochrome Regions in the Flip Schelling Process. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blasius_et_al:LIPIcs.ISAAC.2021.29,
  author =	{Bl\"{a}sius, Thomas and Friedrich, Tobias and Krejca, Martin S. and Molitor, Louise},
  title =	{{The Impact of Geometry on Monochrome Regions in the Flip Schelling Process}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.29},
  URN =		{urn:nbn:de:0030-drops-154623},
  doi =		{10.4230/LIPIcs.ISAAC.2021.29},
  annote =	{Keywords: Agent-based Model, Schelling Segregation, Spin System}
}
Document
Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time

Authors: Franziska Eberle, Nicole Megow, Lukas Nölke, Bertrand Simon, and Andreas Wiese

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
Knapsack problems are among the most fundamental problems in optimization. In the Multiple Knapsack problem, we are given multiple knapsacks with different capacities and items with values and sizes. The task is to find a subset of items of maximum total value that can be packed into the knapsacks without exceeding the capacities. We investigate this problem and special cases thereof in the context of dynamic algorithms and design data structures that efficiently maintain near-optimal knapsack solutions for dynamically changing input. More precisely, we handle the arrival and departure of individual items or knapsacks during the execution of the algorithm with worst-case update time polylogarithmic in the number of items. As the optimal and any approximate solution may change drastically, we maintain implicit solutions and support polylogarithmic time query operations that can return the computed solution value and the packing of any given item. While dynamic algorithms are well-studied in the context of graph problems, there is hardly any work on packing problems (and generally much less on non-graph problems). Motivated by the theoretical interest in knapsack problems and their practical relevance, our work bridges this gap.

Cite as

Franziska Eberle, Nicole Megow, Lukas Nölke, Bertrand Simon, and Andreas Wiese. Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{eberle_et_al:LIPIcs.FSTTCS.2021.18,
  author =	{Eberle, Franziska and Megow, Nicole and N\"{o}lke, Lukas and Simon, Bertrand and Wiese, Andreas},
  title =	{{Fully Dynamic Algorithms for Knapsack Problems with Polylogarithmic Update Time}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.18},
  URN =		{urn:nbn:de:0030-drops-155297},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.18},
  annote =	{Keywords: Fully dynamic algorithms, knapsack problem, approximation schemes}
}
Document
Track A: Algorithms, Complexity and Games
A Spectral Independence View on Hard Spheres via Block Dynamics

Authors: Tobias Friedrich, Andreas Göbel, Martin S. Krejca, and Marcus Pappik

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
The hard-sphere model is one of the most extensively studied models in statistical physics. It describes the continuous distribution of spherical particles, governed by hard-core interactions. An important quantity of this model is the normalizing factor of this distribution, called the partition function. We propose a Markov chain Monte Carlo algorithm for approximating the grand-canonical partition function of the hard-sphere model in d dimensions. Up to a fugacity of λ < e/2^d, the runtime of our algorithm is polynomial in the volume of the system. This covers the entire known real-valued regime for the uniqueness of the Gibbs measure. Key to our approach is to define a discretization that closely approximates the partition function of the continuous model. This results in a discrete hard-core instance that is exponential in the size of the initial hard-sphere model. Our approximation bound follows directly from the correlation decay threshold of an infinite regular tree with degree equal to the maximum degree of our discretization. To cope with the exponential blow-up of the discrete instance we use clique dynamics, a Markov chain that was recently introduced in the setting of abstract polymer models. We prove rapid mixing of clique dynamics up to the tree threshold of the univariate hard-core model. This is achieved by relating clique dynamics to block dynamics and adapting the spectral expansion method, which was recently used to bound the mixing time of Glauber dynamics within the same parameter regime.

Cite as

Tobias Friedrich, Andreas Göbel, Martin S. Krejca, and Marcus Pappik. A Spectral Independence View on Hard Spheres via Block Dynamics. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 66:1-66:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{friedrich_et_al:LIPIcs.ICALP.2021.66,
  author =	{Friedrich, Tobias and G\"{o}bel, Andreas and Krejca, Martin S. and Pappik, Marcus},
  title =	{{A Spectral Independence View on Hard Spheres via Block Dynamics}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{66:1--66:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.66},
  URN =		{urn:nbn:de:0030-drops-141353},
  doi =		{10.4230/LIPIcs.ICALP.2021.66},
  annote =	{Keywords: Hard-sphere Model, Markov Chain, Partition Function, Gibbs Distribution, Approximate Counting, Spectral Independence}
}
Document
Rice’s Theorem for Generic Limit Sets of Cellular Automata

Authors: Martin Delacourt

Published in: OASIcs, Volume 90, 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021)


Abstract
The generic limit set of a cellular automaton is a topologically defined set of configurations that intends to capture the asymptotic behaviours while avoiding atypical ones. It was defined by Milnor then studied by Djenaoui and Guillon first, and by Törmä later. They gave properties of this set related to the dynamics of the cellular automaton, and the maximal complexity of its language. In this paper, we prove that every non trivial property of these generic limit sets of cellular automata is undecidable.

Cite as

Martin Delacourt. Rice’s Theorem for Generic Limit Sets of Cellular Automata. In 27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021). Open Access Series in Informatics (OASIcs), Volume 90, pp. 6:1-6:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{delacourt:OASIcs.AUTOMATA.2021.6,
  author =	{Delacourt, Martin},
  title =	{{Rice’s Theorem for Generic Limit Sets of Cellular Automata}},
  booktitle =	{27th IFIP WG 1.5 International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA 2021)},
  pages =	{6:1--6:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-189-4},
  ISSN =	{2190-6807},
  year =	{2021},
  volume =	{90},
  editor =	{Castillo-Ramirez, Alonso and Guillon, Pierre and Perrot, K\'{e}vin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.AUTOMATA.2021.6},
  URN =		{urn:nbn:de:0030-drops-140151},
  doi =		{10.4230/OASIcs.AUTOMATA.2021.6},
  annote =	{Keywords: cellular automata, dynamical systems, generic-limit sets, Rice’s theorem, subshifts}
}
Document
TESL: A Model with Metric Time for Modeling and Simulation

Authors: Hai Nguyen Van, Frédéric Boulanger, and Burkhart Wolff

Published in: LIPIcs, Volume 178, 27th International Symposium on Temporal Representation and Reasoning (TIME 2020)


Abstract
Real-time and distributed systems are increasingly finding their way into critical embedded systems. On one side, computations need to be achieved within specific time constraints. On the other side, computations may be spread among various units which are not necessarily sharing a global clock. Our study is focused on a specification language - named TESL - used for coordinating concurrent models with timed constraints. We explore various questions related to time when modeling systems, and aim at showing that TESL can be introduced as a reasonable balance of expressiveness and decidability to tackle issues in complex systems. This paper introduces (1) an overview of the TESL language and its main properties (polychrony, stutter-invariance, coinduction for simulation), (2) extensions to the language and their applications.

Cite as

Hai Nguyen Van, Frédéric Boulanger, and Burkhart Wolff. TESL: A Model with Metric Time for Modeling and Simulation. In 27th International Symposium on Temporal Representation and Reasoning (TIME 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 178, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{nguyenvan_et_al:LIPIcs.TIME.2020.15,
  author =	{Nguyen Van, Hai and Boulanger, Fr\'{e}d\'{e}ric and Wolff, Burkhart},
  title =	{{TESL: A Model with Metric Time for Modeling and Simulation}},
  booktitle =	{27th International Symposium on Temporal Representation and Reasoning (TIME 2020)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-167-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{178},
  editor =	{Mu\~{n}oz-Velasco, Emilio and Ozaki, Ana and Theobald, Martin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2020.15},
  URN =		{urn:nbn:de:0030-drops-129837},
  doi =		{10.4230/LIPIcs.TIME.2020.15},
  annote =	{Keywords: Timed Systems, Semantics, Models, Simulation}
}
  • Refine by Author
  • 6 Fränzle, Martin
  • 3 Krejca, Martin S.
  • 2 Abate, Alessandro
  • 2 Friedrich, Tobias
  • 1 Bampis, Evripidis
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Computational geometry
  • 2 Theory of computation → Self-organization
  • 2 Theory of computation → Timed and hybrid models
  • 1 Computer systems organization → Embedded and cyber-physical systems
  • Show More...

  • Refine by Keyword
  • 2 cyber-physical systems
  • 2 planning
  • 1 Agent-based Model
  • 1 Algorithms with predictions
  • 1 Analysis
  • Show More...

  • Refine by Type
  • 22 document

  • Refine by Publication Year
  • 5 2023
  • 4 2021
  • 4 2022
  • 2 2017
  • 2 2020
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail