4 Search Results for "Dafni, Neta"


Document
RANDOM
Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications

Authors: Prashanth Amireddy, Amik Raj Behera, Srikanth Srinivasan, and Madhu Sudan

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We consider random walks on "balanced multislices" of any "grid" that respects the "symmetries" of the grid, and show that a broad class of such walks are good spectral expanders. (A grid is a set of points of the form 𝒮ⁿ for finite 𝒮, and a balanced multi-slice is the subset that contains an equal number of coordinates taking every value in 𝒮. A walk respects symmetries if the probability of going from u = (u_1,…,u_n) to v = (v_1,…,v_n) is invariant under simultaneous permutations of the coordinates of u and v.) Our main theorem shows that, under some technical conditions, every such walk where a single step leads to an almost 𝒪(1)-wise independent distribution on the next state, conditioned on the previous state, satisfies a non-trivially small singular value bound. We give two applications of our theorem to error-correcting codes: (1) We give an analog of the Ore-DeMillo-Lipton-Schwartz-Zippel lemma for polynomials, and junta-sums, over balanced multislices. (2) We also give a local list-correction algorithm for d-junta-sums mapping an arbitrary grid 𝒮ⁿ to an Abelian group, correcting from a near-optimal (1/|𝒮|^d - ε) fraction of errors for every ε > 0, where a d-junta-sum is a sum of (arbitrarily many) d-juntas (and a d-junta is a function that depends on only d of the n variables). Our proofs are obtained by exploring the representation theory of the symmetric group and merging it with some careful spectral analysis.

Cite as

Prashanth Amireddy, Amik Raj Behera, Srikanth Srinivasan, and Madhu Sudan. Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 34:1-34:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{amireddy_et_al:LIPIcs.APPROX/RANDOM.2025.34,
  author =	{Amireddy, Prashanth and Behera, Amik Raj and Srinivasan, Srikanth and Sudan, Madhu},
  title =	{{Eigenvalue Bounds for Symmetric Markov Chains on Multislices with Applications}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{34:1--34:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.34},
  URN =		{urn:nbn:de:0030-drops-244004},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.34},
  annote =	{Keywords: Markov Chains, Random Walk, Multislices, Representation Theory of Symmetric Group, Local Correction, Low-degree Polynomials, Polynomial Distance Lemma}
}
Document
Self-Stabilizing Fully Adaptive Maximal Matching

Authors: Shimon Bitton, Yuval Emek, Taisuke Izumi, and Shay Kutten

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
A self-stabilizing randomized algorithm for mending maximal matching (MM) in synchronous networks is presented. Starting from a legal MM configuration and assuming that the network undergoes k faults or topology changes (that may occur in multiple batches), the algorithm is guaranteed to stabilize back to a legal MM configuration in time O(log k) in expectation and with high probability (in k), using constant size messages. The algorithm is simple to implement and is uniform in the sense that it does not assume unique identifiers, nor does it assume any global knowledge of the communication graph including its size. It relies on a generic probabilistic phase synchronization technique that may be useful for other self-stabilizing problems. The algorithm compares favorably with the existing self-stabilizing MM algorithms in terms of the dependence of its run-time on k, a.k.a. fully adaptive run-time. In fact, this dependence is asymptotically optimal for uniform algorithms that use constant size messages.

Cite as

Shimon Bitton, Yuval Emek, Taisuke Izumi, and Shay Kutten. Self-Stabilizing Fully Adaptive Maximal Matching. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 33:1-33:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bitton_et_al:LIPIcs.OPODIS.2024.33,
  author =	{Bitton, Shimon and Emek, Yuval and Izumi, Taisuke and Kutten, Shay},
  title =	{{Self-Stabilizing Fully Adaptive Maximal Matching}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{33:1--33:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.33},
  URN =		{urn:nbn:de:0030-drops-225698},
  doi =		{10.4230/LIPIcs.OPODIS.2024.33},
  annote =	{Keywords: self-stabilization, maximal matching, fully adaptive run-time, dynamic graphs}
}
Document
Extended Abstract
Complexity Measures on the Symmetric Group and Beyond (Extended Abstract)

Authors: Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
We extend the definitions of complexity measures of functions to domains such as the symmetric group. The complexity measures we consider include degree, approximate degree, decision tree complexity, sensitivity, block sensitivity, and a few others. We show that these complexity measures are polynomially related for the symmetric group and for many other domains. To show that all measures but sensitivity are polynomially related, we generalize classical arguments of Nisan and others. To add sensitivity to the mix, we reduce to Huang’s sensitivity theorem using "pseudo-characters", which witness the degree of a function. Using similar ideas, we extend the characterization of Boolean degree 1 functions on the symmetric group due to Ellis, Friedgut and Pilpel to the perfect matching scheme. As another application of our ideas, we simplify the characterization of maximum-size t-intersecting families in the symmetric group and the perfect matching scheme.

Cite as

Neta Dafni, Yuval Filmus, Noam Lifshitz, Nathan Lindzey, and Marc Vinyals. Complexity Measures on the Symmetric Group and Beyond (Extended Abstract). In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 87:1-87:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dafni_et_al:LIPIcs.ITCS.2021.87,
  author =	{Dafni, Neta and Filmus, Yuval and Lifshitz, Noam and Lindzey, Nathan and Vinyals, Marc},
  title =	{{Complexity Measures on the Symmetric Group and Beyond}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{87:1--87:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.87},
  URN =		{urn:nbn:de:0030-drops-136267},
  doi =		{10.4230/LIPIcs.ITCS.2021.87},
  annote =	{Keywords: Computational Complexity Theory, Analysis of Boolean Functions, Complexity Measures, Extremal Combinatorics}
}
Document
Fast Deterministic Algorithms for Highly-Dynamic Networks

Authors: Keren Censor-Hillel, Neta Dafni, Victor I. Kolobov, Ami Paz, and Gregory Schwartzman

Published in: LIPIcs, Volume 184, 24th International Conference on Principles of Distributed Systems (OPODIS 2020)


Abstract
This paper provides an algorithmic framework for obtaining fast distributed algorithms for a highly-dynamic setting, in which arbitrarily many edge changes may occur in each round. Our algorithm significantly improves upon prior work in its combination of (1) having an O(1) amortized time complexity, (2) using only O(log{n})-bit messages, (3) not posing any restrictions on the dynamic behavior of the environment, (4) being deterministic, (5) having strong guarantees for intermediate solutions, and (6) being applicable for a wide family of tasks. The tasks for which we deduce such an algorithm are maximal matching, (degree+1)-coloring, 2-approximation for minimum weight vertex cover, and maximal independent set (which is the most subtle case). For some of these tasks, node insertions can also be among the allowed topology changes, and for some of them also abrupt node deletions.

Cite as

Keren Censor-Hillel, Neta Dafni, Victor I. Kolobov, Ami Paz, and Gregory Schwartzman. Fast Deterministic Algorithms for Highly-Dynamic Networks. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 184, pp. 28:1-28:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.OPODIS.2020.28,
  author =	{Censor-Hillel, Keren and Dafni, Neta and Kolobov, Victor I. and Paz, Ami and Schwartzman, Gregory},
  title =	{{Fast Deterministic Algorithms for Highly-Dynamic Networks}},
  booktitle =	{24th International Conference on Principles of Distributed Systems (OPODIS 2020)},
  pages =	{28:1--28:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-176-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{184},
  editor =	{Bramas, Quentin and Oshman, Rotem and Romano, Paolo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.28},
  URN =		{urn:nbn:de:0030-drops-135138},
  doi =		{10.4230/LIPIcs.OPODIS.2020.28},
  annote =	{Keywords: dynamic distributed algorithms}
}
  • Refine by Type
  • 4 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 2 2021

  • Refine by Author
  • 2 Dafni, Neta
  • 1 Amireddy, Prashanth
  • 1 Behera, Amik Raj
  • 1 Bitton, Shimon
  • 1 Censor-Hillel, Keren
  • Show More...

  • Refine by Series/Journal
  • 4 LIPIcs

  • Refine by Classification
  • 1 Computer systems organization → Fault-tolerant network topologies
  • 1 Mathematics of computing → Discrete mathematics
  • 1 Theory of computation
  • 1 Theory of computation → Computational complexity and cryptography
  • 1 Theory of computation → Random walks and Markov chains

  • Refine by Keyword
  • 1 Analysis of Boolean Functions
  • 1 Complexity Measures
  • 1 Computational Complexity Theory
  • 1 Extremal Combinatorics
  • 1 Local Correction
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail