7 Search Results for "Gourvès, Laurent"


Document
Improved Hardness-Of-Approximation for Token-Swapping

Authors: Sam Hiken and Nicole Wein

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We study the token swapping problem, in which we are given a graph with an initial assignment of one distinct token to each vertex, and a final desired assignment (again with one token per vertex). The goal is to find the minimum length sequence of swaps of adjacent tokens required to get from the initial to the final assignment. The token swapping problem is known to be NP-complete. It is also known to have a polynomial-time 4-approximation algorithm. From the hardness-of-approximation side, it is known to be NP-hard to approximate with a ratio better than 1001/1000. Our main result is an improvement of the approximation ratio of the lower bound: We show that it is NP-hard to approximate with ratio better than 14/13. We then turn our attention to the 0/1-weighted version, in which every token has a weight of either 0 or 1, and the cost of a swap is the sum of the weights of the two participating tokens. Unlike standard token swapping, no constant-factor approximation is known for this version, and we provide an explanation. We prove that 0/1-weighted token swapping is NP-hard to approximate with ratio better than (1-ε) ln(n) for any constant ε > 0. Lastly, we prove two barrier results for the standard (unweighted) token swapping problem. We show that one cannot beat the current best known approximation ratio of 4 using a large class of algorithms which includes all known algorithms, nor can one beat it using a common analysis framework.

Cite as

Sam Hiken and Nicole Wein. Improved Hardness-Of-Approximation for Token-Swapping. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 57:1-57:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hiken_et_al:LIPIcs.ESA.2025.57,
  author =	{Hiken, Sam and Wein, Nicole},
  title =	{{Improved Hardness-Of-Approximation for Token-Swapping}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{57:1--57:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.57},
  URN =		{urn:nbn:de:0030-drops-245251},
  doi =		{10.4230/LIPIcs.ESA.2025.57},
  annote =	{Keywords: algorithms, token-swapping, hardness-of-approximation, lower-bounds}
}
Document
On the Performance of Mildly Greedy Players in k-Coloring Games

Authors: Vittorio Bilò, Andrea D'Ascenzo, Mattia D'Emidio, and Giuseppe F. Italiano

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study the performance of mildly greedy players in k-coloring games, a relevant subclass of anti-coordination games. A mildly greedy player is a selfish agent who is willing to deviate from a certain strategy profile only if her payoff improves by a factor of more than ε, for some given ε ≥ 0. In presence of mildly greedy players, stability is captured by the concept of (1+ε)-approximate Nash equilibrium. In this paper, we first show that, for any k-coloring game, the (1+ε)-approximate price of anarchy, i.e., the price of anarchy of (1+ε)-approximate pure Nash equilibria, is at least (k-1)/((k-1)ε +k), and that this bound is tight for any ε ≥ 0. Then, we evaluate the approximation ratio of the solutions achieved after a (1 + ϵ)-approximate one-round walk starting from any initial strategy profile, where a (1 + ϵ)-approximate one-round walk is a sequence of (1 + ε)-approximate best-responses, one for each player. We provide a lower bound of min{(k-2)/k, (k-1)/((k-1)ε+k)} on this ratio, for any ε ≥ 0 and k ≥ 5; for the cases of k = 3 and k = 4, we give finer bounds depending on ε. Our work generalizes the results known for cut games, the special case of k-coloring games restricted to k = 2.

Cite as

Vittorio Bilò, Andrea D'Ascenzo, Mattia D'Emidio, and Giuseppe F. Italiano. On the Performance of Mildly Greedy Players in k-Coloring Games. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 21:1-21:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bilo_et_al:LIPIcs.MFCS.2025.21,
  author =	{Bil\`{o}, Vittorio and D'Ascenzo, Andrea and D'Emidio, Mattia and Italiano, Giuseppe F.},
  title =	{{On the Performance of Mildly Greedy Players in k-Coloring Games}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{21:1--21:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.21},
  URN =		{urn:nbn:de:0030-drops-241287},
  doi =		{10.4230/LIPIcs.MFCS.2025.21},
  annote =	{Keywords: Coloring games, (Approximate) Nash Equilibria, Price of Anarchy}
}
Document
Group Fairness and Multi-Criteria Optimization in School Assignment

Authors: Santhini K. A., Kamesh Munagala, Meghana Nasre, and Govind S. Sankar

Published in: LIPIcs, Volume 329, 6th Symposium on Foundations of Responsible Computing (FORC 2025)


Abstract
We consider the problem of assigning students to schools when students have different utilities for schools and schools have limited capacities. The students belong to demographic groups, and fairness over these groups is captured either by concave objectives, or additional constraints on the utility of the groups. We present approximation algorithms for this assignment problem with group fairness via convex program rounding. These algorithms achieve various trade-offs between capacity violation and running time. We also show that our techniques easily extend to the setting where there are arbitrary constraints on the feasible assignment, capturing multi-criteria optimization. We present simulation results that demonstrate that the rounding methods are practical even on large problem instances, with the empirical capacity violation being much better than the theoretical bounds.

Cite as

Santhini K. A., Kamesh Munagala, Meghana Nasre, and Govind S. Sankar. Group Fairness and Multi-Criteria Optimization in School Assignment. In 6th Symposium on Foundations of Responsible Computing (FORC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 329, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{k.a._et_al:LIPIcs.FORC.2025.20,
  author =	{K. A., Santhini and Munagala, Kamesh and Nasre, Meghana and S. Sankar, Govind},
  title =	{{Group Fairness and Multi-Criteria Optimization in School Assignment}},
  booktitle =	{6th Symposium on Foundations of Responsible Computing (FORC 2025)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-367-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{329},
  editor =	{Bun, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2025.20},
  URN =		{urn:nbn:de:0030-drops-231471},
  doi =		{10.4230/LIPIcs.FORC.2025.20},
  annote =	{Keywords: School Assignment, Approximation Algorithms, Group Fairness}
}
Document
MaxMin Separation Problems: FPT Algorithms for st-Separator and Odd Cycle Transversal

Authors: Ajinkya Gaikwad, Hitendra Kumar, Soumen Maity, Saket Saurabh, and Roohani Sharma

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
In this paper, we study the parameterized complexity of the MaxMin versions of two fundamental separation problems: Maximum Minimal st-Separator and Maximum Minimal Odd Cycle Transversal (OCT), both parameterized by the solution size. In the Maximum Minimal st-Separator problem, given a graph G, two distinct vertices s and t and a positive integer k, the goal is to determine whether there exists a minimal st-separator in G of size at least k. Similarly, the Maximum Minimal OCT problem seeks to determine if there exists a minimal set of vertices whose deletion results in a bipartite graph, and whose size is at least k. We demonstrate that both problems are fixed-parameter tractable parameterized by k. Our FPT algorithm for Maximum Minimal st-Separator answers the open question by Hanaka, Bodlaender, van der Zanden & Ono [TCS 2019]. One unique insight from this work is the following. We use the meta-result of Lokshtanov, Ramanujan, Saurabh & Zehavi [ICALP 2018] that enables us to reduce our problems to highly unbreakable graphs. This is interesting, as an explicit use of the recursive understanding and randomized contractions framework of Chitnis, Cygan, Hajiaghayi, Pilipczuk & Pilipczuk [SICOMP 2016] to reduce to the highly unbreakable graphs setting (which is the result that Lokshtanov et al. tries to abstract out in their meta-theorem) does not seem obvious because certain "extension" variants of our problems are W[1]-hard.

Cite as

Ajinkya Gaikwad, Hitendra Kumar, Soumen Maity, Saket Saurabh, and Roohani Sharma. MaxMin Separation Problems: FPT Algorithms for st-Separator and Odd Cycle Transversal. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 36:1-36:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gaikwad_et_al:LIPIcs.STACS.2025.36,
  author =	{Gaikwad, Ajinkya and Kumar, Hitendra and Maity, Soumen and Saurabh, Saket and Sharma, Roohani},
  title =	{{MaxMin Separation Problems: FPT Algorithms for st-Separator and Odd Cycle Transversal}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{36:1--36:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.36},
  URN =		{urn:nbn:de:0030-drops-228622},
  doi =		{10.4230/LIPIcs.STACS.2025.36},
  annote =	{Keywords: Parameterized Complexity, FPT, MaxMin problems, Maximum Minimal st-separator, Maximum Minimal Odd Cycle Transversal, Unbreakable Graphs, CMSO, Long Induced Odd Cycles, Sunflower Lemma}
}
Document
Filling Crosswords Is Very Hard

Authors: Laurent Gourvès, Ararat Harutyunyan, Michael Lampis, and Nikolaos Melissinos

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We revisit a classical crossword filling puzzle which already appeared in Garey&Jonhson’s book. We are given a grid with n vertical and horizontal slots and a dictionary with m words and are asked to place words from the dictionary in the slots so that shared cells are consistent. We attempt to pinpoint the source of intractability of this problem by carefully taking into account the structure of the grid graph, which contains a vertex for each slot and an edge if two slots intersect. Our main approach is to consider the case where this graph has a tree-like structure. Unfortunately, if we impose the common rule that words cannot be reused, we discover that the problem remains NP-hard under very severe structural restrictions, namely, if the grid graph is a union of stars and the alphabet has size 2, or the grid graph is a matching (so the crossword is a collection of disjoint crosses) and the alphabet has size 3. The problem does become slightly more tractable if word reuse is allowed, as we obtain an m^{tw} algorithm in this case, where tw is the treewidth of the grid graph. However, even in this case, we show that our algorithm cannot be improved to obtain fixed-parameter tractability. More strongly, we show that under the ETH the problem cannot be solved in time m^o(k), where k is the number of horizontal slots of the instance (which trivially bounds tw). Motivated by these mostly negative results, we also consider the much more restricted case where the problem is parameterized by the number of slots n. Here, we show that the problem does become FPT (if the alphabet has constant size), but the parameter dependence is exponential in n². We show that this dependence is also justified: the existence of an algorithm with running time 2^o(n²), even for binary alphabet, would contradict the randomized ETH. Finally, we consider an optimization version of the problem, where we seek to place as many words on the grid as possible. Here it is easy to obtain a 1/2-approximation, even on weighted instances, simply by considering only horizontal or only vertical slots. We show that this trivial algorithm is also likely to be optimal, as obtaining a better approximation ratio in polynomial time would contradict the Unique Games Conjecture. The latter two results apply whether word reuse is allowed or not.

Cite as

Laurent Gourvès, Ararat Harutyunyan, Michael Lampis, and Nikolaos Melissinos. Filling Crosswords Is Very Hard. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 36:1-36:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gourves_et_al:LIPIcs.ISAAC.2021.36,
  author =	{Gourv\`{e}s, Laurent and Harutyunyan, Ararat and Lampis, Michael and Melissinos, Nikolaos},
  title =	{{Filling Crosswords Is Very Hard}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{36:1--36:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.36},
  URN =		{urn:nbn:de:0030-drops-154690},
  doi =		{10.4230/LIPIcs.ISAAC.2021.36},
  annote =	{Keywords: Crossword Puzzle, Treewidth, ETH}
}
Document
The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet

Authors: Nicolas Boria, Laurent Gourvès, Vangelis Th. Paschos, and Jérôme Monnot

Published in: LIPIcs, Volume 201, 21st International Workshop on Algorithms in Bioinformatics (WABI 2021)


Abstract
Given two strings A and B such that B is a permutation of A, the max duo-preservation string mapping (MPSM) problem asks to find a mapping π between them so as to preserve a maximum number of duos. A duo is any pair of consecutive characters in a string and it is preserved by π if its two consecutive characters in A are mapped to same two consecutive characters in B. This problem has received a growing attention in recent years, partly as an alternative way to produce approximation algorithms for its minimization counterpart, min common string partition, a widely studied problem due its applications in comparative genomics. Considering this favored field of application with short alphabet, it is surprising that MPSM^𝓁, the variant of MPSM with bounded alphabet, has received so little attention, with a single yet impressive work that provides a 2.67-approximation achieved in O(n) [Brubach, 2018], where n = |A| = |B|. Our work focuses on MPSM^𝓁, and our main contribution is the demonstration that this problem admits a Polynomial Time Approximation Scheme (PTAS) when 𝓁 = O(1). We also provide an alternate, somewhat simpler, proof of NP-hardness for this problem compared with the NP-hardness proof presented in [Haitao Jiang et al., 2012].

Cite as

Nicolas Boria, Laurent Gourvès, Vangelis Th. Paschos, and Jérôme Monnot. The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet. In 21st International Workshop on Algorithms in Bioinformatics (WABI 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 201, pp. 5:1-5:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{boria_et_al:LIPIcs.WABI.2021.5,
  author =	{Boria, Nicolas and Gourv\`{e}s, Laurent and Paschos, Vangelis Th. and Monnot, J\'{e}r\^{o}me},
  title =	{{The Maximum Duo-Preservation String Mapping Problem with Bounded Alphabet}},
  booktitle =	{21st International Workshop on Algorithms in Bioinformatics (WABI 2021)},
  pages =	{5:1--5:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-200-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{201},
  editor =	{Carbone, Alessandra and El-Kebir, Mohammed},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2021.5},
  URN =		{urn:nbn:de:0030-drops-143586},
  doi =		{10.4230/LIPIcs.WABI.2021.5},
  annote =	{Keywords: Maximum-Duo Preservation String Mapping, Bounded alphabet, Polynomial Time Approximation Scheme}
}
Document
Covering Clients with Types and Budgets

Authors: Dimitris Fotakis, Laurent Gourvès, Claire Mathieu, and Abhinav Srivastav

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
In this paper, we consider a variant of the facility location problem. Imagine the scenario where facilities are categorized into multiple types such as schools, hospitals, post offices, etc. and the cost of connecting a client to a facility is realized by the distance between them. Each client has a total budget on the distance she/he is willing to travel. The goal is to open the minimum number of facilities such that the aggregate distance of each client to multiple types is within her/his budget. This problem closely resembles to the set cover and r-domination problems. Here, we study this problem in different settings. Specifically, we present some positive and negative results in the general setting, where no assumption is made on the distance values. Then we show that better results can be achieved when clients and facilities lie in a metric space.

Cite as

Dimitris Fotakis, Laurent Gourvès, Claire Mathieu, and Abhinav Srivastav. Covering Clients with Types and Budgets. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 73:1-73:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{fotakis_et_al:LIPIcs.ISAAC.2018.73,
  author =	{Fotakis, Dimitris and Gourv\`{e}s, Laurent and Mathieu, Claire and Srivastav, Abhinav},
  title =	{{Covering Clients with Types and Budgets}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{73:1--73:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.73},
  URN =		{urn:nbn:de:0030-drops-100213},
  doi =		{10.4230/LIPIcs.ISAAC.2018.73},
  annote =	{Keywords: Facility Location, Geometric Set Cover, Local Search}
}
  • Refine by Type
  • 7 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 4 2025
  • 2 2021
  • 1 2018

  • Refine by Author
  • 3 Gourvès, Laurent
  • 1 Bilò, Vittorio
  • 1 Boria, Nicolas
  • 1 D'Ascenzo, Andrea
  • 1 D'Emidio, Mattia
  • Show More...

  • Refine by Series/Journal
  • 7 LIPIcs

  • Refine by Classification
  • 3 Theory of computation → Approximation algorithms analysis
  • 1 Mathematics of computing → Graph coloring
  • 1 Theory of computation → Complexity classes
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Dynamic programming
  • Show More...

  • Refine by Keyword
  • 1 (Approximate) Nash Equilibria
  • 1 Approximation Algorithms
  • 1 Bounded alphabet
  • 1 CMSO
  • 1 Coloring games
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail