3 Search Results for "Hoffmann, Stefan"


Document
The Synchronization Game on Subclasses of Automata

Authors: Henning Fernau, Carolina Haase, and Stefan Hoffmann

Published in: LIPIcs, Volume 226, 11th International Conference on Fun with Algorithms (FUN 2022)


Abstract
The notion of synchronization of finite automata is connected to one of the long-standing open problems in combinatorial automata theory, which is Černý’s Conjecture. In this paper, we focus on so-called synchronization games. We will discuss how to present synchronization questions in a playful way. This leads us to study related complexity questions on certain classes of finite automata. More precisely, we consider weakly acyclic, commutative and k-simple idempotent automata. We encounter a number of complexity classes, ranging from L up to PSPACE.

Cite as

Henning Fernau, Carolina Haase, and Stefan Hoffmann. The Synchronization Game on Subclasses of Automata. In 11th International Conference on Fun with Algorithms (FUN 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 226, pp. 14:1-14:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fernau_et_al:LIPIcs.FUN.2022.14,
  author =	{Fernau, Henning and Haase, Carolina and Hoffmann, Stefan},
  title =	{{The Synchronization Game on Subclasses of Automata}},
  booktitle =	{11th International Conference on Fun with Algorithms (FUN 2022)},
  pages =	{14:1--14:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-232-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{226},
  editor =	{Fraigniaud, Pierre and Uno, Yushi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2022.14},
  URN =		{urn:nbn:de:0030-drops-159842},
  doi =		{10.4230/LIPIcs.FUN.2022.14},
  annote =	{Keywords: Synchronization of finite automata, computational complexity}
}
Document
On the Complexity of Intersection Non-emptiness for Star-Free Language Classes

Authors: Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus de Oliveira Oliveira, and Petra Wolf

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
In the Intersection Non-emptiness problem, we are given a list of finite automata A_1, A_2,… , A_m over a common alphabet Σ as input, and the goal is to determine whether some string w ∈ Σ^* lies in the intersection of the languages accepted by the automata in the list. We analyze the complexity of the Intersection Non-emptiness problem under the promise that all input automata accept a language in some level of the dot-depth hierarchy, or some level of the Straubing-Thérien hierarchy. Automata accepting languages from the lowest levels of these hierarchies arise naturally in the context of model checking. We identify a dichotomy in the dot-depth hierarchy by showing that the problem is already NP-complete when all input automata accept languages of the levels B_0 or B_{1/2} and already PSPACE-hard when all automata accept a language from the level B_1. Conversely, we identify a tetrachotomy in the Straubing-Thérien hierarchy. More precisely, we show that the problem is in AC^0 when restricted to level L_0; complete for L or NL, depending on the input representation, when restricted to languages in the level L_{1/2}; NP-complete when the input is given as DFAs accepting a language in L_1 or L_{3/2}; and finally, PSPACE-complete when the input automata accept languages in level L_2 or higher. Moreover, we show that the proof technique used to show containment in NP for DFAs accepting languages in L_1 or L_{3/2} does not generalize to the context of NFAs. To prove this, we identify a family of languages that provide an exponential separation between the state complexity of general NFAs and that of partially ordered NFAs. To the best of our knowledge, this is the first superpolynomial separation between these two models of computation.

Cite as

Emmanuel Arrighi, Henning Fernau, Stefan Hoffmann, Markus Holzer, Ismaël Jecker, Mateus de Oliveira Oliveira, and Petra Wolf. On the Complexity of Intersection Non-emptiness for Star-Free Language Classes. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arrighi_et_al:LIPIcs.FSTTCS.2021.34,
  author =	{Arrighi, Emmanuel and Fernau, Henning and Hoffmann, Stefan and Holzer, Markus and Jecker, Isma\"{e}l and de Oliveira Oliveira, Mateus and Wolf, Petra},
  title =	{{On the Complexity of Intersection Non-emptiness for Star-Free Language Classes}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.34},
  URN =		{urn:nbn:de:0030-drops-155456},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.34},
  annote =	{Keywords: Intersection Non-emptiness Problem, Star-Free Languages, Straubing-Th\'{e}rien Hierarchy, dot-depth Hierarchy, Commutative Languages, Complexity}
}
Document
Computational Complexity of Synchronization under Regular Constraints

Authors: Henning Fernau, Vladimir V. Gusev, Stefan Hoffmann, Markus Holzer, Mikhail V. Volkov, and Petra Wolf

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
Many variations of synchronization of finite automata have been studied in the previous decades. Here, we suggest studying the question if synchronizing words exist that belong to some fixed constraint language, given by some partial finite automaton called constraint automaton. We show that this synchronization problem becomes PSPACE-complete even for some constraint automata with two states and a ternary alphabet. In addition, we characterize constraint automata with arbitrarily many states for which the constrained synchronization problem is polynomial-time solvable. We classify the complexity of the constrained synchronization problem for constraint automata with two states and two or three letters completely and lift those results to larger classes of finite automata.

Cite as

Henning Fernau, Vladimir V. Gusev, Stefan Hoffmann, Markus Holzer, Mikhail V. Volkov, and Petra Wolf. Computational Complexity of Synchronization under Regular Constraints. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 63:1-63:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fernau_et_al:LIPIcs.MFCS.2019.63,
  author =	{Fernau, Henning and Gusev, Vladimir V. and Hoffmann, Stefan and Holzer, Markus and Volkov, Mikhail V. and Wolf, Petra},
  title =	{{Computational Complexity of Synchronization under Regular Constraints}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{63:1--63:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.63},
  URN =		{urn:nbn:de:0030-drops-110078},
  doi =		{10.4230/LIPIcs.MFCS.2019.63},
  annote =	{Keywords: Finite automata, synchronization, computational complexity}
}
  • Refine by Author
  • 3 Fernau, Henning
  • 3 Hoffmann, Stefan
  • 2 Holzer, Markus
  • 2 Wolf, Petra
  • 1 Arrighi, Emmanuel
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Regular languages
  • 2 Theory of computation → Problems, reductions and completeness
  • 1 Theory of computation → Complexity classes

  • Refine by Keyword
  • 2 computational complexity
  • 1 Commutative Languages
  • 1 Complexity
  • 1 Finite automata
  • 1 Intersection Non-emptiness Problem
  • Show More...

  • Refine by Type
  • 3 document

  • Refine by Publication Year
  • 1 2019
  • 1 2021
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail