6 Search Results for "Langley, Zachary"


Document
Constructing Long Paths in Graph Streams

Authors: Christian Konrad and Chhaya Trehan

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
In the graph stream model of computation, an algorithm processes the edges of an n-vertex input graph in one or more sequential passes while using a memory that is sublinear in the input size. The streaming model poses significant challenges for algorithmically constructing long paths. Many known algorithms that are tasked with extending an existing path as a subroutine require an entire pass over the input to add a single additional edge. This raises a fundamental question: Are multiple passes inherently necessary to construct paths of non-trivial lengths, or can a single pass suffice? To address this question, we systematically study the Longest Path problem in the one-pass streaming model. In this problem, given a desired approximation factor α, the objective is to compute a path of length at least lp(G)/α, where lp(G) is the length of a longest path in the input graph G. We study the problem in the insertion-only and the insertion-deletion streaming models, and we give algorithms as well as space lower bounds for both undirected and directed graphs. Our results are: 1) We show that for undirected graphs, in both the insertion-only and the insertion-deletion models, there are semi-streaming algorithms, i.e., algorithms that use space O(n poly log n), that compute a path of length at least d/3 with high probability, where d is the average degree of the input graph. These algorithms can also yield an α-approximation to Longest Path using space Õ(n²/α). 2) Next, we show that such a result cannot be achieved for directed graphs, even in the insertion-only model. We show that computing a (n^{1-o(1)})-approximation to Longest Path in directed graphs in the insertion-only model requires space Ω(n²). This result is in line with recent results that demonstrate that processing directed graphs is often significantly harder than undirected graphs in the streaming model. 3) We further complement our results with two additional lower bounds. First, we show that semi-streaming space is insufficient for small constant factor approximations to Longest Path for undirected graphs in the insertion-only model. Last, in undirected graphs in the insertion-deletion model, we show that computing an α-approximation requires space Ω(n²/α³).

Cite as

Christian Konrad and Chhaya Trehan. Constructing Long Paths in Graph Streams. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{konrad_et_al:LIPIcs.ESA.2025.22,
  author =	{Konrad, Christian and Trehan, Chhaya},
  title =	{{Constructing Long Paths in Graph Streams}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.22},
  URN =		{urn:nbn:de:0030-drops-244902},
  doi =		{10.4230/LIPIcs.ESA.2025.22},
  annote =	{Keywords: Longest Path Problem, Streaming Algorithms, One-way Two-party Communication Complexity}
}
Document
Track A: Algorithms, Complexity and Games
Dynamic Algorithms for Submodular Matching

Authors: Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Morteza Monemizadeh

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The Maximum Submodular Matching (MSM) problem is a generalization of the classical Maximum Weight Matching (MWM) problem. In this problem, given a monotone submodular function f: 2^E → ℝ^{≥ 0} defined over subsets of edges of a graph G(V, E), we are asked to return a matching whose submodular value is maximum among all matchings in graph G(V, E). In this paper, we consider this problem in a fully dynamic setting against an oblivious adversary. In this setting, we are given a sequence 𝒮 of insertions and deletions of edges of the underlying graph G(V, E), along with an oracle access to the monotone submodular function f. The goal is to maintain a matching M such that, at any time t of sequence 𝒮, its submodular value is a good approximation of the value of the optimal submodular matching while keeping the number of operations minimal. We develop the first dynamic algorithm for the submodular matching problem, in which we maintain a matching whose submodular value is within expected (8 + ε)-approximation of the optimal submodular matching at any time t of sequence 𝒮 using expected amortized poly(log n, 1/(ε)) update time. Our approach incorporates a range of novel techniques, notably the concept of Uniform Hierarchical Caches (UHC) data structure along with its invariants, which lead to the first algorithm for fully dynamic submodular matching and may be of independent interest for designing dynamic algorithms for other problems.

Cite as

Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Morteza Monemizadeh. Dynamic Algorithms for Submodular Matching. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 19:1-19:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ICALP.2025.19,
  author =	{Banihashem, Kiarash and Biabani, Leyla and Goudarzi, Samira and Hajiaghayi, MohammadTaghi and Jabbarzade, Peyman and Monemizadeh, Morteza},
  title =	{{Dynamic Algorithms for Submodular Matching}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{19:1--19:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.19},
  URN =		{urn:nbn:de:0030-drops-233969},
  doi =		{10.4230/LIPIcs.ICALP.2025.19},
  annote =	{Keywords: Matching, Submodular, Dynamic, Polylogarithmic}
}
Document
Track A: Algorithms, Complexity and Games
Faster Semi-Streaming Matchings via Alternating Trees

Authors: Slobodan Mitrović, Anish Mukherjee, Piotr Sankowski, and Wen-Horng Sheu

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We design a deterministic algorithm for the (1+ε)-approximate maximum matching problem. Our primary result demonstrates that this problem can be solved in O(ε^{-6}) semi-streaming passes, improving upon the O(ε^{-19}) pass-complexity algorithm by [Fischer, Mitrović, and Uitto, STOC'22]. This contributes substantially toward resolving Open question 2 from [Assadi, SOSA'24]. Leveraging the framework introduced in [FMU'22], our algorithm achieves an analogous round complexity speed-up for computing a (1+ε)-approximate maximum matching in both the Massively Parallel Computation (MPC) and CONGEST models. The data structures maintained by our algorithm are formulated using blossom notation and represented through alternating trees. This approach enables a simplified correctness analysis by treating specific components as if operating on bipartite graphs, effectively circumventing certain technical intricacies present in prior work.

Cite as

Slobodan Mitrović, Anish Mukherjee, Piotr Sankowski, and Wen-Horng Sheu. Faster Semi-Streaming Matchings via Alternating Trees. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 119:1-119:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mitrovic_et_al:LIPIcs.ICALP.2025.119,
  author =	{Mitrovi\'{c}, Slobodan and Mukherjee, Anish and Sankowski, Piotr and Sheu, Wen-Horng},
  title =	{{Faster Semi-Streaming Matchings via Alternating Trees}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{119:1--119:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.119},
  URN =		{urn:nbn:de:0030-drops-234965},
  doi =		{10.4230/LIPIcs.ICALP.2025.119},
  annote =	{Keywords: streaming algorithms, approximation algorithms, maximum matching}
}
Document
On b-Matching and Fully-Dynamic Maximum k-Edge Coloring

Authors: Antoine El-Hayek, Kathrin Hanauer, and Monika Henzinger

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
Given a graph G that undergoes a sequence of edge insertions and deletions, we study the Maximum k-Edge Coloring problem (MkEC): Having access to k different colors, color as many edges of G as possible such that no two adjacent edges share the same color. While this problem is different from simply maintaining a b-matching with b = k, the two problems are related. However, maximum b-matching can be solved efficiently in the static setting, whereas MkEC is NP-hard and even APX-hard for k ≥ 2. We present new results on both problems: For b-matching, we show a new integrality gap result and we adapt Wajc’s matching sparsification scheme [David Wajc, 2020] for the case where b is a constant. Using these as basis, we give three new algorithms for the dynamic MkEC problem: Our MatchO algorithm builds on the dynamic (2+ε)-approximation algorithm of Bhattacharya, Gupta, and Mohan [Sayan Bhattacharya et al., 2017] for b-matching and achieves a (2+ε)(k+1)/k-approximation in O(poly(log n, ε^-1)) update time against an oblivious adversary. Our MatchA algorithm builds on the dynamic (7+ε)-approximation algorithm by Bhattacharya, Henzinger, and Italiano [Sayan Bhattacharya et al., 2015] for fractional b-matching and achieves a (7+ε)(3k+3)/(3k-1)-approximation in O(poly(log n, ε^-1)) update time against an adaptive adversary. Moreover, our reductions use the dynamic b-matching algorithm as a black box, so any future improvement in the approximation ratio for dynamic b-matching will automatically translate into a better approximation ratio for our algorithms. Finally, we present a greedy algorithm with O(Δ+k) update time, which guarantees a 2.16 approximation factor.

Cite as

Antoine El-Hayek, Kathrin Hanauer, and Monika Henzinger. On b-Matching and Fully-Dynamic Maximum k-Edge Coloring. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{elhayek_et_al:LIPIcs.SAND.2025.4,
  author =	{El-Hayek, Antoine and Hanauer, Kathrin and Henzinger, Monika},
  title =	{{On b-Matching and Fully-Dynamic Maximum k-Edge Coloring}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{4:1--4:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.4},
  URN =		{urn:nbn:de:0030-drops-230571},
  doi =		{10.4230/LIPIcs.SAND.2025.4},
  annote =	{Keywords: dynamic algorithm, graph algorithm, matching, b-matching, edge coloring}
}
Document
All-Norm Load Balancing in Graph Streams via the Multiplicative Weights Update Method

Authors: Sepehr Assadi, Aaron Bernstein, and Zachary Langley

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In the weighted load balancing problem, the input is an n-vertex bipartite graph between a set of clients and a set of servers, and each client comes with some nonnegative real weight. The output is an assignment that maps each client to one of its adjacent servers, and the load of a server is then the sum of the weights of the clients assigned to it. The goal is to find an assignment that is well-balanced, typically captured by (approximately) minimizing either the 𝓁_∞- or 𝓁₂-norm of the server loads. Generalizing both of these objectives, the all-norm load balancing problem asks for an assignment that approximately minimizes all 𝓁_p-norm objectives for p ≥ 1, including p = ∞, simultaneously. Our main result is a deterministic O(log n)-pass O(1)-approximation semi-streaming algorithm for the all-norm load balancing problem. Prior to our work, only an O(log n)-pass O(log n)-approximation algorithm for the 𝓁_∞-norm objective was known in the semi-streaming setting. Our algorithm uses a novel application of the multiplicative weights update method to a mixed covering/packing convex program for the all-norm load balancing problem involving an infinite number of constraints.

Cite as

Sepehr Assadi, Aaron Bernstein, and Zachary Langley. All-Norm Load Balancing in Graph Streams via the Multiplicative Weights Update Method. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 7:1-7:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.ITCS.2023.7,
  author =	{Assadi, Sepehr and Bernstein, Aaron and Langley, Zachary},
  title =	{{All-Norm Load Balancing in Graph Streams via the Multiplicative Weights Update Method}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{7:1--7:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.7},
  URN =		{urn:nbn:de:0030-drops-175106},
  doi =		{10.4230/LIPIcs.ITCS.2023.7},
  annote =	{Keywords: Load Balancing, Semi-Streaming Algorithms, Semi-Matching}
}
Document
Improved Bounds for Distributed Load Balancing

Authors: Sepehr Assadi, Aaron Bernstein, and Zachary Langley

Published in: LIPIcs, Volume 179, 34th International Symposium on Distributed Computing (DISC 2020)


Abstract
In the load balancing problem, the input is an n-vertex bipartite graph G = (C ∪ S, E) - where the two sides of the bipartite graph are referred to as the clients and the servers - and a positive weight for each client c ∈ C. The algorithm must assign each client c ∈ C to an adjacent server s ∈ S. The load of a server is then the weighted sum of all the clients assigned to it. The goal is to compute an assignment that minimizes some function of the server loads, typically either the maximum server load (i.e., the 𝓁_∞-norm) or the 𝓁_p-norm of the server loads. This problem has a variety of applications and has been widely studied under several different names, including: scheduling with restricted assignment, semi-matching, and distributed backup placement. We study load balancing in the distributed setting. There are two existing results in the CONGEST model. Czygrinow et al. [DISC 2012] showed a 2-approximation for unweighted clients with round-complexity O(Δ⁵), where Δ is the maximum degree of the input graph. Halldórsson et al. [SPAA 2015] showed an O(log n / log log n)-approximation for unweighted clients and O(log²n/log log n)-approximation for weighted clients with round-complexity polylog(n). In this paper, we show the first distributed algorithms to compute an O(1)-approximation to the load balancing problem in polylog(n) rounds: - In the CONGEST model, we give an O(1)-approximation algorithm in polylog(n) rounds for unweighted clients. For weighted clients, the approximation ratio is O(log{n}). - In the less constrained LOCAL model, we give an O(1)-approximation algorithm for weighted clients in polylog(n) rounds. Our approach also has implications for the standard sequential setting in which we obtain the first O(1)-approximation for this problem that runs in near-linear time. A 2-approximation is already known, but it requires solving a linear program and is hence much slower. Finally, we note that all of our results simultaneously approximate all 𝓁_p-norms, including the 𝓁_∞-norm.

Cite as

Sepehr Assadi, Aaron Bernstein, and Zachary Langley. Improved Bounds for Distributed Load Balancing. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.DISC.2020.1,
  author =	{Assadi, Sepehr and Bernstein, Aaron and Langley, Zachary},
  title =	{{Improved Bounds for Distributed Load Balancing}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{1:1--1:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Attiya, Hagit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.1},
  URN =		{urn:nbn:de:0030-drops-130798},
  doi =		{10.4230/LIPIcs.DISC.2020.1},
  annote =	{Keywords: Load Balancing, Distributed Algorithms, Matching, Semi-Matching}
}
  • Refine by Type
  • 6 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 4 2025
  • 1 2023
  • 1 2020

  • Refine by Author
  • 2 Assadi, Sepehr
  • 2 Bernstein, Aaron
  • 2 Langley, Zachary
  • 1 Banihashem, Kiarash
  • 1 Biabani, Leyla
  • Show More...

  • Refine by Series/Journal
  • 6 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Graph algorithms analysis
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Mathematics of computing → Paths and connectivity problems
  • 1 Theory of computation → Approximation algorithms analysis
  • 1 Theory of computation → Distributed algorithms
  • Show More...

  • Refine by Keyword
  • 2 Load Balancing
  • 2 Matching
  • 2 Semi-Matching
  • 1 Distributed Algorithms
  • 1 Dynamic
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail