5 Search Results for "Lonkar, Aditya"


Document
Online Hitting Sets for Disks of Bounded Radii

Authors: Minati De, Satyam Singh, and Csaba D. Tóth

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present algorithms for the online minimum hitting set problem in geometric range spaces: Given a set P of n points in the plane and a sequence of geometric objects that arrive one-by-one, we need to maintain a hitting set at all times. For disks of radii in the interval [1,M], we present an O(log M log n)-competitive algorithm. This result generalizes from disks to positive homothets of any convex body in the plane with scaling factors in the interval [1,M]. As a main technical tool, we reduce the problem to the online hitting set problem for a finite subset of integer points and bottomless rectangles. Specifically, for a given N > 1, we present an O(log N)-competitive algorithm for the variant where P is a subset of an N× N section of the integer lattice, and the geometric objects are bottomless rectangles.

Cite as

Minati De, Satyam Singh, and Csaba D. Tóth. Online Hitting Sets for Disks of Bounded Radii. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 50:1-50:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{de_et_al:LIPIcs.ESA.2025.50,
  author =	{De, Minati and Singh, Satyam and T\'{o}th, Csaba D.},
  title =	{{Online Hitting Sets for Disks of Bounded Radii}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{50:1--50:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.50},
  URN =		{urn:nbn:de:0030-drops-245181},
  doi =		{10.4230/LIPIcs.ESA.2025.50},
  annote =	{Keywords: Geometric Hitting Set, Online Algorithm, Homothets, Disks}
}
Document
Random Local Access for Sampling k-SAT Solutions

Authors: Dingding Dong and Nitya Mani

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
We present a sublinear time algorithm that gives random local access to the uniform distribution over satisfying assignments to an arbitrary k-SAT formula Φ, at exponential clause density. Our algorithm provides memory-less query access to variable assignments, such that the output variable assignments consistently emulate a single global satisfying assignment whose law is close to the uniform distribution over satisfying assignments to Φ. Random local access and related models have been studied for a wide variety of natural Gibbs distributions and random graphical processes. Here, we establish feasibility of random local access models for one of the most canonical such sample spaces, the set of satisfying assignments to a k-SAT formula. Our algorithm proceeds by leveraging the local uniformity of the uniform distribution over satisfying assignments to Φ. We randomly partition the variables into two subsets, so that each clause has sufficiently many variables from each set to preserve local uniformity. We then sample some variables by simulating a systematic scan Glauber dynamics backward in time, greedily constructing the necessary intermediate steps. We sample the other variables by first conducting a search for a polylogarithmic-sized local component, which we iteratively grow to identify a small subformula from which we can efficiently sample using the appropriate marginal distribution. This two-pronged approach enables us to sample individual variable assignments without constructing a full solution.

Cite as

Dingding Dong and Nitya Mani. Random Local Access for Sampling k-SAT Solutions. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 13:1-13:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dong_et_al:LIPIcs.SAT.2025.13,
  author =	{Dong, Dingding and Mani, Nitya},
  title =	{{Random Local Access for Sampling k-SAT Solutions}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{13:1--13:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.13},
  URN =		{urn:nbn:de:0030-drops-237474},
  doi =		{10.4230/LIPIcs.SAT.2025.13},
  annote =	{Keywords: sublinear time algorithms, random generation, k-SAT, local computation}
}
Document
Online and Dynamic Algorithms for Geometric Set Cover and Hitting Set

Authors: Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas Wiese

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
Set cover and hitting set are fundamental problems in combinatorial optimization which are well-studied in the offline, online, and dynamic settings. We study the geometric versions of these problems and present new online and dynamic algorithms for them. In the online version of set cover (resp. hitting set), m sets (resp. n points) are given and n points (resp. m sets) arrive online, one-by-one. In the dynamic versions, points (resp. sets) can arrive as well as depart. Our goal is to maintain a set cover (resp. hitting set), minimizing the size of the computed solution. For online set cover for (axis-parallel) squares of arbitrary sizes, we present a tight O(log n)-competitive algorithm. In the same setting for hitting set, we provide a tight O(log N)-competitive algorithm, assuming that all points have integral coordinates in [0,N)². No online algorithm had been known for either of these settings, not even for unit squares (apart from the known online algorithms for arbitrary set systems). For both dynamic set cover and hitting set with d-dimensional hyperrectangles, we obtain (log m)^O(d)-approximation algorithms with (log m)^O(d) worst-case update time. This partially answers an open question posed by Chan et al. [SODA'22]. Previously, no dynamic algorithms with polylogarithmic update time were known even in the setting of squares (for either of these problems). Our main technical contributions are an extended quad-tree approach and a frequency reduction technique that reduces geometric set cover instances to instances of general set cover with bounded frequency.

Cite as

Arindam Khan, Aditya Lonkar, Saladi Rahul, Aditya Subramanian, and Andreas Wiese. Online and Dynamic Algorithms for Geometric Set Cover and Hitting Set. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 46:1-46:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{khan_et_al:LIPIcs.SoCG.2023.46,
  author =	{Khan, Arindam and Lonkar, Aditya and Rahul, Saladi and Subramanian, Aditya and Wiese, Andreas},
  title =	{{Online and Dynamic Algorithms for Geometric Set Cover and Hitting Set}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{46:1--46:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.46},
  URN =		{urn:nbn:de:0030-drops-178967},
  doi =		{10.4230/LIPIcs.SoCG.2023.46},
  annote =	{Keywords: Geometric Set Cover, Hitting Set, Rectangles, Squares, Hyperrectangles, Online Algorithms, Dynamic Data Structures}
}
Document
Track A: Algorithms, Complexity and Games
Tight Approximation Algorithms for Two-Dimensional Guillotine Strip Packing

Authors: Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, and Andreas Wiese

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
In the Strip Packing problem (SP), we are given a vertical half-strip [0,W]×[0,∞) and a set of n axis-aligned rectangles of width at most W. The goal is to find a non-overlapping packing of all rectangles into the strip such that the height of the packing is minimized. A well-studied and frequently used practical constraint is to allow only those packings that are guillotine separable, i.e., every rectangle in the packing can be obtained by recursively applying a sequence of edge-to-edge axis-parallel cuts (guillotine cuts) that do not intersect any item of the solution. In this paper, we study approximation algorithms for the Guillotine Strip Packing problem (GSP), i.e., the Strip Packing problem where we require additionally that the packing needs to be guillotine separable. This problem generalizes the classical Bin Packing problem and also makespan minimization on identical machines, and thus it is already strongly NP-hard. Moreover, due to a reduction from the Partition problem, it is NP-hard to obtain a polynomial-time (3/2-ε)-approximation algorithm for GSP for any ε > 0 (exactly as Strip Packing). We provide a matching polynomial time (3/2+ε)-approximation algorithm for GSP. Furthermore, we present a pseudo-polynomial time (1+ε)-approximation algorithm for GSP. This is surprising as it is NP-hard to obtain a (5/4-ε)-approximation algorithm for (general) Strip Packing in pseudo-polynomial time. Thus, our results essentially settle the approximability of GSP for both the polynomial and the pseudo-polynomial settings.

Cite as

Arindam Khan, Aditya Lonkar, Arnab Maiti, Amatya Sharma, and Andreas Wiese. Tight Approximation Algorithms for Two-Dimensional Guillotine Strip Packing. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 80:1-80:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{khan_et_al:LIPIcs.ICALP.2022.80,
  author =	{Khan, Arindam and Lonkar, Aditya and Maiti, Arnab and Sharma, Amatya and Wiese, Andreas},
  title =	{{Tight Approximation Algorithms for Two-Dimensional Guillotine Strip Packing}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{80:1--80:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.80},
  URN =		{urn:nbn:de:0030-drops-164215},
  doi =		{10.4230/LIPIcs.ICALP.2022.80},
  annote =	{Keywords: Approximation Algorithms, Two-Dimensional Packing, Rectangle Packing, Guillotine Cuts, Computational Geometry}
}
Document
Improved FPT Algorithms for Deletion to Forest-Like Structures

Authors: Kishen N. Gowda, Aditya Lonkar, Fahad Panolan, Vraj Patel, and Saket Saurabh

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
The Feedback Vertex Set problem is undoubtedly one of the most well-studied problems in Parameterized Complexity. In this problem, given an undirected graph G and a non-negative integer k, the objective is to test whether there exists a subset S ⊆ V(G) of size at most k such that G-S is a forest. After a long line of improvement, recently, Li and Nederlof [SODA, 2020] designed a randomized algorithm for the problem running in time 𝒪^⋆(2.7^k). In the Parameterized Complexity literature, several problems around Feedback Vertex Set have been studied. Some of these include Independent Feedback Vertex Set (where the set S should be an independent set in G), Almost Forest Deletion and Pseudoforest Deletion. In Pseudoforest Deletion, each connected component in G-S has at most one cycle in it. However, in Almost Forest Deletion, the input is a graph G and non-negative integers k,𝓁 ∈ ℕ, and the objective is to test whether there exists a vertex subset S of size at most k, such that G-S is 𝓁 edges away from a forest. In this paper, using the methodology of Li and Nederlof [SODA, 2020], we obtain the current fastest algorithms for all these problems. In particular we obtain following randomized algorithms. 1) Independent Feedback Vertex Set can be solved in time 𝒪^⋆(2.7^k). 2) Pseudo Forest Deletion can be solved in time 𝒪^⋆(2.85^k). 3) Almost Forest Deletion can be solved in 𝒪^⋆(min{2.85^k ⋅ 8.54^𝓁, 2.7^k ⋅ 36.61^𝓁, 3^k ⋅ 1.78^𝓁}).

Cite as

Kishen N. Gowda, Aditya Lonkar, Fahad Panolan, Vraj Patel, and Saket Saurabh. Improved FPT Algorithms for Deletion to Forest-Like Structures. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 34:1-34:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gowda_et_al:LIPIcs.ISAAC.2020.34,
  author =	{Gowda, Kishen N. and Lonkar, Aditya and Panolan, Fahad and Patel, Vraj and Saurabh, Saket},
  title =	{{Improved FPT Algorithms for Deletion to Forest-Like Structures}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{34:1--34:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.34},
  URN =		{urn:nbn:de:0030-drops-133781},
  doi =		{10.4230/LIPIcs.ISAAC.2020.34},
  annote =	{Keywords: Parameterized Complexity, Independent Feedback Vertex Set, PseudoForest, Almost Forest, Cut and Count, Treewidth}
}
  • Refine by Type
  • 5 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 1 2023
  • 1 2022
  • 1 2020

  • Refine by Author
  • 3 Lonkar, Aditya
  • 2 Khan, Arindam
  • 2 Wiese, Andreas
  • 1 De, Minati
  • 1 Dong, Dingding
  • Show More...

  • Refine by Series/Journal
  • 5 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Computational geometry
  • 2 Theory of computation → Online algorithms
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Theory of computation → Streaming, sublinear and near linear time algorithms

  • Refine by Keyword
  • 1 Almost Forest
  • 1 Approximation Algorithms
  • 1 Computational Geometry
  • 1 Cut and Count
  • 1 Disks
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail