4 Search Results for "Padoan, Tommaso"


Document
Invited Talk
Approximating Fixpoints of Approximated Functions (Invited Talk)

Authors: Barbara König

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
There is a large body of work on fixpoint theorems, guaranteeing the existence of fixpoints for certain functions and providing methods for computing them. This includes for instance Banachs’s fixpoint theorem, the well-known result by Knaster-Tarski that is frequently employed in computer science and Kleene iteration. It is less clear how to compute fixpoints if the function whose (least) fixpoint we are interested in is not known exactly, but can only be obtained by a sequence of subsequently better approximations. This scenario occurs for instance in the context of reinforcement learning, where the probabilities of a Markov decision process (MDP) - for which one wants to learn a strategy - are unknown and can only be sampled. There are several solutions to this problem where the fixpoint computation (for determining the value vector and the optimal strategy) and the exploration of the model are interleaved. However, these methods work only well for discounted MDPs, that is in the contractive setting, but not for general MDPs, that is for non-expansive functions. After describing and motivating the problem, we will in particular concentrate on the non-expansive case. There are many interesting systems who value vectors can be obtained by determining the fixpoints of non-expansive functions. Other than contractive functions, they do not guarantee uniqueness of the fixpoint, making it more difficult to approximate the least fixpoint by methods other than Kleene iteration. And also Kleene iteration fails if the function under consideration is only approximated. We hence describe a dampened Mann iteration scheme for (higher-dimensional) functions on the reals that converges to the least fixpoint from everywhere. This scheme can also be adapted to functions that are approximated, under certain conditions. We will in particular study the case of MDPs and consider a related problem that arises when performing model-checking for quantitative mu-calculi, which involves the computation of nested fixpoints. This is joint work with Paolo Baldan, Sebastian Gurke, Tommaso Padoan and Florian Wittbold.

Cite as

Barbara König. Approximating Fixpoints of Approximated Functions (Invited Talk). In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, p. 4:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{konig:LIPIcs.CSL.2024.4,
  author =	{K\"{o}nig, Barbara},
  title =	{{Approximating Fixpoints of Approximated Functions}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{4:1--4:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.4},
  URN =		{urn:nbn:de:0030-drops-196469},
  doi =		{10.4230/LIPIcs.CSL.2024.4},
  annote =	{Keywords: fixpoints, approximation, Markov decision processes}
}
Document
A Lattice-Theoretical View of Strategy Iteration

Authors: Paolo Baldan, Richard Eggert, Barbara König, and Tommaso Padoan

Published in: LIPIcs, Volume 252, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023)


Abstract
Strategy iteration is a technique frequently used for two-player games in order to determine the winner or compute payoffs, but to the best of our knowledge no general framework for strategy iteration has been considered. Inspired by previous work on simple stochastic games, we propose a general formalisation of strategy iteration for solving least fixpoint equations over a suitable class of complete lattices, based on MV-chains. We devise algorithms that can be used for non-expansive fixpoint functions represented as so-called min- respectively max-decompositions. Correspondingly, we develop two different techniques: strategy iteration from above, which has to solve the problem that iteration might reach a fixpoint that is not the least, and from below, which is algorithmically simpler, but requires a more involved correctness argument. We apply our method to solve energy games and compute behavioural metrics for probabilistic automata.

Cite as

Paolo Baldan, Richard Eggert, Barbara König, and Tommaso Padoan. A Lattice-Theoretical View of Strategy Iteration. In 31st EACSL Annual Conference on Computer Science Logic (CSL 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 252, pp. 7:1-7:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{baldan_et_al:LIPIcs.CSL.2023.7,
  author =	{Baldan, Paolo and Eggert, Richard and K\"{o}nig, Barbara and Padoan, Tommaso},
  title =	{{A Lattice-Theoretical View of Strategy Iteration}},
  booktitle =	{31st EACSL Annual Conference on Computer Science Logic (CSL 2023)},
  pages =	{7:1--7:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-264-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{252},
  editor =	{Klin, Bartek and Pimentel, Elaine},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2023.7},
  URN =		{urn:nbn:de:0030-drops-174680},
  doi =		{10.4230/LIPIcs.CSL.2023.7},
  annote =	{Keywords: games, strategy iteration, fixpoints, energy games, behavioural metrics}
}
Document
(Un)Decidability for History Preserving True Concurrent Logics

Authors: Paolo Baldan, Alberto Carraro, and Tommaso Padoan

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We investigate the satisfiability problem for a logic for true concurrency, whose formulae predicate about events in computations and their causal (in)dependencies. Variants of such logics have been studied, with different expressiveness, corresponding to a number of true concurrent behavioural equivalences. Here we focus on a mu-calculus style logic that represents the counterpart of history-preserving (hp-)bisimilarity, a typical equivalence in the true concurrent spectrum of bisimilarities. It is known that one can decide whether or not two 1-safe Petri nets (and in general finite asynchronous transition systems) are hp-bisimilar. Moreover, for the logic that captures hp-bisimilarity the model-checking problem is decidable with respect to prime event structures satisfying suitable regularity conditions. To the best of our knowledge, the problem of satisfiability has been scarcely investigated in the realm of true concurrent logics. We show that satisfiability for the logic for hp-bisimilarity is undecidable via a reduction from domino tilings. The fragment of the logic without fixpoints, instead, turns out to be decidable. We consider these results a first step towards a more complete investigation of the satisfiability problem for true concurrent logics, which we believe to have notable solvable cases.

Cite as

Paolo Baldan, Alberto Carraro, and Tommaso Padoan. (Un)Decidability for History Preserving True Concurrent Logics. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 13:1-13:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baldan_et_al:LIPIcs.MFCS.2021.13,
  author =	{Baldan, Paolo and Carraro, Alberto and Padoan, Tommaso},
  title =	{{(Un)Decidability for History Preserving True Concurrent Logics}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{13:1--13:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.13},
  URN =		{urn:nbn:de:0030-drops-144532},
  doi =		{10.4230/LIPIcs.MFCS.2021.13},
  annote =	{Keywords: Event structures, history-preserving bisimilarity, true concurrent behavioural logics, satisfiability, decidability, domino systems}
}
Document
Abstraction, Up-To Techniques and Games for Systems of Fixpoint Equations

Authors: Paolo Baldan, Barbara König, and Tommaso Padoan

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
Systems of fixpoint equations over complete lattices, consisting of (mixed) least and greatest fixpoint equations, allow one to express many verification tasks such as model-checking of various kinds of specification logics or the check of coinductive behavioural equivalences. In this paper we develop a theory of approximation for systems of fixpoint equations in the style of abstract interpretation: a system over some concrete domain is abstracted to a system in a suitable abstract domain, with conditions ensuring that the abstract solution represents a sound/complete overapproximation of the concrete solution. Interestingly, up-to techniques, a classical approach used in coinductive settings to obtain easier or feasible proofs, can be interpreted as abstractions in a way that they naturally fit into our framework and extend to systems of equations. Additionally, relying on the approximation theory, we can characterise the solution of systems of fixpoint equations over complete lattices in terms of a suitable parity game, generalising some recent work that was restricted to continuous lattices. The game view opens the way for the development of local algorithms for characterising the solution of such equation systems and we explore some special cases.

Cite as

Paolo Baldan, Barbara König, and Tommaso Padoan. Abstraction, Up-To Techniques and Games for Systems of Fixpoint Equations. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 25:1-25:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baldan_et_al:LIPIcs.CONCUR.2020.25,
  author =	{Baldan, Paolo and K\"{o}nig, Barbara and Padoan, Tommaso},
  title =	{{Abstraction, Up-To Techniques and Games for Systems of Fixpoint Equations}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{25:1--25:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.25},
  URN =		{urn:nbn:de:0030-drops-128373},
  doi =		{10.4230/LIPIcs.CONCUR.2020.25},
  annote =	{Keywords: fixpoint equation systems, complete lattices, parity games, abstract interpretation, up-to techniques, \mu-calculus, bisimilarity}
}
  • Refine by Author
  • 3 Baldan, Paolo
  • 3 König, Barbara
  • 3 Padoan, Tommaso
  • 1 Carraro, Alberto
  • 1 Eggert, Richard

  • Refine by Classification
  • 2 Theory of computation → Logic and verification
  • 1 Software and its engineering → Model checking
  • 1 Theory of computation → Modal and temporal logics
  • 1 Theory of computation → Program reasoning
  • 1 Theory of computation → Program verification
  • Show More...

  • Refine by Keyword
  • 2 fixpoints
  • 1 Event structures
  • 1 Markov decision processes
  • 1 abstract interpretation
  • 1 approximation
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2020
  • 1 2021
  • 1 2023
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail