6 Search Results for "Rush, Cynthia"


Document
RANDOM
Algorithmic Contiguity from Low-Degree Conjecture and Applications in Correlated Random Graphs

Authors: Zhangsong Li

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
In this paper, assuming a natural strengthening of the low-degree conjecture, we provide evidence of computational hardness for two problems: (1) the (partial) matching recovery problem in the sparse correlated Erdős-Rényi graphs G(n,q;ρ) when the edge-density q = n^{-1+o(1)} and the correlation ρ < √{α} lies below the Otter’s threshold, this resolves a remaining problem in [Jian Ding et al., 2023]; (2) the detection problem between a pair of correlated sparse stochastic block model S(n,λ/n;k,ε;s) and a pair of independent stochastic block models S(n,λs/n;k,ε) when ε² λ s < 1 lies below the Kesten-Stigum (KS) threshold and s < √α lies below the Otter’s threshold, this resolves a remaining problem in [Guanyi Chen et al., 2024]. One of the main ingredient in our proof is to derive certain forms of algorithmic contiguity between two probability measures based on bounds on their low-degree advantage. To be more precise, consider the high-dimensional hypothesis testing problem between two probability measures ℙ and ℚ based on the sample Y. We show that if the low-degree advantage Adv_{≤D}(dℙ/dℚ) = O(1), then (assuming the low-degree conjecture) there is no efficient algorithm A such that ℚ(A(Y) = 0) = 1-o(1) and ℙ(A(Y) = 1) = Ω(1). This framework provides a useful tool for performing reductions between different inference tasks.

Cite as

Zhangsong Li. Algorithmic Contiguity from Low-Degree Conjecture and Applications in Correlated Random Graphs. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 30:1-30:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li:LIPIcs.APPROX/RANDOM.2025.30,
  author =	{Li, Zhangsong},
  title =	{{Algorithmic Contiguity from Low-Degree Conjecture and Applications in Correlated Random Graphs}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{30:1--30:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.30},
  URN =		{urn:nbn:de:0030-drops-243965},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.30},
  annote =	{Keywords: Algorithmic Contiguity, Low-degree Conjecture, Correlated Random Graphs}
}
Document
Switching Graph Matrix Norm Bounds: From i.i.d. to Random Regular Graphs

Authors: Jeff Xu

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
In this work, we give novel spectral norm bounds for graph matrix on inputs being random regular graphs. Graph matrix is a family of random matrices with entries given by polynomial functions of the underlying input. These matrices have been known to be the backbone for the analysis of various average-case algorithms and hardness. Previous investigations of such matrices are largely restricted to the Erdős-Rényi model, and tight matrix norm bounds on regular graphs are only known for specific examples. We unite these two lines of investigations, and give the first result departing from the Erdős-Rényi setting in the full generality of graph matrices. We believe our norm bound result would enable a simple transfer of spectral analysis for average-case algorithms and hardness between these two distributions of random graphs. As an application of our spectral norm bounds, we show that higher-degree Sum-of-Squares lower bounds for the independent set problem on Erdős-Rényi random graphs can be switched into lower bounds on random d-regular graphs. Our main conceptual insight is that existing Sum-of-Squares lower bounds analysis based on moment methods are surprisingly robust, and amenable for a light-weight translation. Our result is the first to address the general open question of analyzing higher-degree Sum-of-Squares on random regular graphs.

Cite as

Jeff Xu. Switching Graph Matrix Norm Bounds: From i.i.d. to Random Regular Graphs. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{xu:LIPIcs.CCC.2025.11,
  author =	{Xu, Jeff},
  title =	{{Switching Graph Matrix Norm Bounds: From i.i.d. to Random Regular Graphs}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.11},
  URN =		{urn:nbn:de:0030-drops-237054},
  doi =		{10.4230/LIPIcs.CCC.2025.11},
  annote =	{Keywords: Semidefinite programming, random matrices, average-case complexity}
}
Document
Track A: Algorithms, Complexity and Games
Fourier Analysis of Iterative Algorithms

Authors: Chris Jones and Lucas Pesenti

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study a general class of nonlinear iterative algorithms which includes power iteration, belief propagation and approximate message passing, and many forms of gradient descent. When the input is a random matrix with i.i.d. entries, we use Boolean Fourier analysis to analyze these algorithms as low-degree polynomials in the entries of the input matrix. Each symmetrized Fourier character represents all monomials with a certain shape as specified by a small graph, which we call a Fourier diagram. We prove fundamental asymptotic properties of the Fourier diagrams: over the randomness of the input, all diagrams with cycles are negligible; the tree-shaped diagrams form a basis of asymptotically independent Gaussian vectors; and, when restricted to the trees, iterative algorithms exactly follow an idealized Gaussian dynamic. We use this to prove a state evolution formula, giving a "complete" asymptotic description of the algorithm’s trajectory. The restriction to tree-shaped monomials mirrors the assumption of the cavity method, a 40-year-old non-rigorous technique in statistical physics which has served as one of the most important techniques in the field. We demonstrate how to implement cavity method derivations by 1) restricting the iteration to its tree approximation, and 2) observing that heuristic cavity method-type arguments hold rigorously on the simplified iteration. Our proofs use combinatorial arguments similar to the trace method from random matrix theory. Finally, we push the diagram analysis to a number of iterations that scales with the dimension n of the input matrix, proving that the tree approximation still holds for a simple variant of power iteration all the way up to n^{Ω(1)} iterations.

Cite as

Chris Jones and Lucas Pesenti. Fourier Analysis of Iterative Algorithms. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 102:1-102:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jones_et_al:LIPIcs.ICALP.2025.102,
  author =	{Jones, Chris and Pesenti, Lucas},
  title =	{{Fourier Analysis of Iterative Algorithms}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{102:1--102:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.102},
  URN =		{urn:nbn:de:0030-drops-234791},
  doi =		{10.4230/LIPIcs.ICALP.2025.102},
  annote =	{Keywords: Iterative Algorithms, Message-passing Algorithms, Random Matrix Theory}
}
Document
Private Estimation When Data and Privacy Demands Are Correlated

Authors: Syomantak Chaudhuri and Thomas A. Courtade

Published in: LIPIcs, Volume 329, 6th Symposium on Foundations of Responsible Computing (FORC 2025)


Abstract
Differential Privacy (DP) is the current gold-standard for ensuring privacy for statistical queries. Estimation problems under DP constraints appearing in the literature have largely focused on providing equal privacy to all users. We consider the problems of empirical mean estimation for univariate data and frequency estimation for categorical data, both subject to heterogeneous privacy constraints. Each user, contributing a sample to the dataset, is allowed to have a different privacy demand. The dataset itself is assumed to be worst-case and we study both problems under two different formulations - first, where privacy demands and data may be correlated, and second, where correlations are weakened by random permutation of the dataset. We establish theoretical performance guarantees for our proposed algorithms, under both PAC error and mean-squared error. These performance guarantees translate to minimax optimality in several instances, and experiments confirm superior performance of our algorithms over other baseline techniques.

Cite as

Syomantak Chaudhuri and Thomas A. Courtade. Private Estimation When Data and Privacy Demands Are Correlated. In 6th Symposium on Foundations of Responsible Computing (FORC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 329, pp. 3:1-3:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chaudhuri_et_al:LIPIcs.FORC.2025.3,
  author =	{Chaudhuri, Syomantak and Courtade, Thomas A.},
  title =	{{Private Estimation When Data and Privacy Demands Are Correlated}},
  booktitle =	{6th Symposium on Foundations of Responsible Computing (FORC 2025)},
  pages =	{3:1--3:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-367-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{329},
  editor =	{Bun, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2025.3},
  URN =		{urn:nbn:de:0030-drops-231305},
  doi =		{10.4230/LIPIcs.FORC.2025.3},
  annote =	{Keywords: Differential Privacy, Personalized Privacy, Heterogeneous Privacy, Correlations in Privacy}
}
Document
Count on Your Elders: Laplace vs Gaussian Noise

Authors: Joel Daniel Andersson, Rasmus Pagh, Teresa Anna Steiner, and Sahel Torkamani

Published in: LIPIcs, Volume 329, 6th Symposium on Foundations of Responsible Computing (FORC 2025)


Abstract
In recent years, Gaussian noise has become a popular tool in differentially private algorithms, often replacing Laplace noise which dominated the early literature on differential privacy. Gaussian noise is the standard approach to approximate differential privacy, often resulting in much higher utility than traditional (pure) differential privacy mechanisms. In this paper we argue that Laplace noise may in fact be preferable to Gaussian noise in many settings, in particular when we seek to achieve (ε,δ)-differential privacy for small values of δ. We consider two scenarios: First, we consider the problem of counting under continual observation and present a new generalization of the binary tree mechanism that uses a k-ary number system with negative digits to improve the privacy-accuracy trade-off. Our mechanism uses Laplace noise and whenever δ is sufficiently small it improves the mean squared error over the best possible (ε,δ)-differentially private factorization mechanisms based on Gaussian noise. Specifically, using k = 19 we get an asymptotic improvement over the bound given in the work by Henzinger, Upadhyay and Upadhyay (SODA 2023) when δ = O(T^{-0.92}). Second, we show that the noise added by the Gaussian mechanism can always be replaced by Laplace noise of comparable variance for the same (ε, δ)-differential privacy guarantee, and in fact for sufficiently small δ the variance of the Laplace noise becomes strictly better. This challenges the conventional wisdom that Gaussian noise should be used for high-dimensional noise. Finally, we study whether counting under continual observation may be easier in an average-case sense than in a worst-case sense. We show that, under pure differential privacy, the expected worst-case error for a random input must be Ω(log(T)/ε), matching the known lower bound for worst-case inputs.

Cite as

Joel Daniel Andersson, Rasmus Pagh, Teresa Anna Steiner, and Sahel Torkamani. Count on Your Elders: Laplace vs Gaussian Noise. In 6th Symposium on Foundations of Responsible Computing (FORC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 329, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{andersson_et_al:LIPIcs.FORC.2025.10,
  author =	{Andersson, Joel Daniel and Pagh, Rasmus and Steiner, Teresa Anna and Torkamani, Sahel},
  title =	{{Count on Your Elders: Laplace vs Gaussian Noise}},
  booktitle =	{6th Symposium on Foundations of Responsible Computing (FORC 2025)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-367-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{329},
  editor =	{Bun, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2025.10},
  URN =		{urn:nbn:de:0030-drops-231376},
  doi =		{10.4230/LIPIcs.FORC.2025.10},
  annote =	{Keywords: differential privacy, continual observation, streaming, prefix sums, trees}
}
Document
Is It Easier to Count Communities Than Find Them?

Authors: Cynthia Rush, Fiona Skerman, Alexander S. Wein, and Dana Yang

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
Random graph models with community structure have been studied extensively in the literature. For both the problems of detecting and recovering community structure, an interesting landscape of statistical and computational phase transitions has emerged. A natural unanswered question is: might it be possible to infer properties of the community structure (for instance, the number and sizes of communities) even in situations where actually finding those communities is believed to be computationally hard? We show the answer is no. In particular, we consider certain hypothesis testing problems between models with different community structures, and we show (in the low-degree polynomial framework) that testing between two options is as hard as finding the communities. In addition, our methods give the first computational lower bounds for testing between two different "planted" distributions, whereas previous results have considered testing between a planted distribution and an i.i.d. "null" distribution.

Cite as

Cynthia Rush, Fiona Skerman, Alexander S. Wein, and Dana Yang. Is It Easier to Count Communities Than Find Them?. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 94:1-94:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{rush_et_al:LIPIcs.ITCS.2023.94,
  author =	{Rush, Cynthia and Skerman, Fiona and Wein, Alexander S. and Yang, Dana},
  title =	{{Is It Easier to Count Communities Than Find Them?}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{94:1--94:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.94},
  URN =		{urn:nbn:de:0030-drops-175970},
  doi =		{10.4230/LIPIcs.ITCS.2023.94},
  annote =	{Keywords: Community detection, Hypothesis testing, Low-degree polynomials}
}
  • Refine by Type
  • 6 Document/PDF
  • 5 Document/HTML

  • Refine by Publication Year
  • 5 2025
  • 1 2023

  • Refine by Author
  • 1 Andersson, Joel Daniel
  • 1 Chaudhuri, Syomantak
  • 1 Courtade, Thomas A.
  • 1 Jones, Chris
  • 1 Li, Zhangsong
  • Show More...

  • Refine by Series/Journal
  • 6 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Random network models
  • 1 Mathematics of computing → Loopy belief propagation
  • 1 Mathematics of computing → Random graphs
  • 1 Mathematics of computing → Statistical paradigms
  • 1 Mathematics of computing → Stochastic control and optimization
  • Show More...

  • Refine by Keyword
  • 1 Algorithmic Contiguity
  • 1 Community detection
  • 1 Correlated Random Graphs
  • 1 Correlations in Privacy
  • 1 Differential Privacy
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail