7 Search Results for "Shende, Sunil"


Document
Research
Encoding Data Structures for Range Queries on Arrays

Authors: Seungbum Jo and Srinivasa Rao Satti

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
Efficiently processing range queries on arrays is a fundamental problem in computer science, with applications spanning diverse domains such as database management, computational biology, and geographic information systems. A range query retrieves information about a specific segment of an array, such as the sum, minimum, maximum, or median of elements within a given range. The challenge lies in designing data structures that allow such queries to be answered quickly, often in constant or logarithmic time, while keeping space overhead (and preprocessing time) small. Encoding data structures for range queries has emerged as a pivotal area of research due to the increasing demand for high-performance systems handling massive datasets. These structures consider the data together with the queries and aim to store only as much information about the data as is needed to answer the queries. The data structure does not need to access the original data to answer the queries. Encoding-based solutions often leverage techniques from succinct data structures, bit manipulation, and combinatorial optimization to achieve both space and time efficiency. By encoding the array in a manner that preserves critical information, these methods strike a balance between query time and space usage. In this survey article, we explore the landscape of encoding data structures for range queries on arrays, providing a comprehensive overview of some important results on space-efficient encodings for various types of range query.

Cite as

Seungbum Jo and Srinivasa Rao Satti. Encoding Data Structures for Range Queries on Arrays. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 12:1-12:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jo_et_al:OASIcs.Grossi.12,
  author =	{Jo, Seungbum and Satti, Srinivasa Rao},
  title =	{{Encoding Data Structures for Range Queries on Arrays}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{12:1--12:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.12},
  URN =		{urn:nbn:de:0030-drops-238116},
  doi =		{10.4230/OASIcs.Grossi.12},
  annote =	{Keywords: range queries, RMQ, Cartesian tree, top-k queries, range median, range mode}
}
Document
Encodings for Range Minimum Queries over Bounded Alphabets

Authors: Seungbum Jo and Srinivasa Rao Satti

Published in: LIPIcs, Volume 331, 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)


Abstract
Range minimum queries (RMQs) are fundamental operations with widespread applications in database management, text indexing and computational biology. While many space-efficient data structures have been designed for RMQs on arrays with arbitrary elements, there has not been any results developed for the case when the alphabet size is small, which is the case in many practical scenarios where RMQ structures are used. In this paper, we investigate the encoding complexity of RMQs on arrays over bounded alphabet. We consider both one-dimensional (1D) and two-dimensional (2D) arrays. For the 1D case, we present a near-optimal space encoding. For constant-sized alphabets, this also supports the queries in constant time. For the 2D case, we systematically analyze the 1-sided, 2-sided, 3-sided and 4-sided queries and derive lower bounds for encoding space, and also matching upper bounds that support efficient queries in most cases. Our results demonstrate that, even with the bounded alphabet restriction, the space requirements remain close to those for the general alphabet case.

Cite as

Seungbum Jo and Srinivasa Rao Satti. Encodings for Range Minimum Queries over Bounded Alphabets. In 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 331, pp. 25:1-25:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jo_et_al:LIPIcs.CPM.2025.25,
  author =	{Jo, Seungbum and Satti, Srinivasa Rao},
  title =	{{Encodings for Range Minimum Queries over Bounded Alphabets}},
  booktitle =	{36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)},
  pages =	{25:1--25:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-369-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{331},
  editor =	{Bonizzoni, Paola and M\"{a}kinen, Veli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2025.25},
  URN =		{urn:nbn:de:0030-drops-231198},
  doi =		{10.4230/LIPIcs.CPM.2025.25},
  annote =	{Keywords: Range minimum queries, Encoding data structures, Cartesian trees}
}
Document
Crash-Tolerant Exploration of Trees by Energy-Sharing Mobile Agents

Authors: Quentin Bramas, Toshimitsu Masuzawa, and Sébastien Tixeuil

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
We consider the problem of graph exploration by energy sharing mobile agents that are subject to crash faults. More precisely, we consider a team of two agents where at most one of them may fail unpredictably, and the considered topology is that of connected acyclic graphs (i.e. trees). We consider both the asynchronous and the synchronous settings, and we provide necessary and sufficient conditions about the energy.

Cite as

Quentin Bramas, Toshimitsu Masuzawa, and Sébastien Tixeuil. Crash-Tolerant Exploration of Trees by Energy-Sharing Mobile Agents. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bramas_et_al:LIPIcs.OPODIS.2024.9,
  author =	{Bramas, Quentin and Masuzawa, Toshimitsu and Tixeuil, S\'{e}bastien},
  title =	{{Crash-Tolerant Exploration of Trees by Energy-Sharing Mobile Agents}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{9:1--9:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.9},
  URN =		{urn:nbn:de:0030-drops-225452},
  doi =		{10.4230/LIPIcs.OPODIS.2024.9},
  annote =	{Keywords: Mobile Agents, Distributed Algorithms, Energy sharing}
}
Document
Group Evacuation on a Line by Agents with Different Communication Abilities

Authors: Jurek Czyzowicz, Ryan Killick, Evangelos Kranakis, Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, Denis Pankratov, and Sunil Shende

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We consider evacuation of a group of n ≥ 2 autonomous mobile agents (or robots) from an unknown exit on an infinite line. The agents are initially placed at the origin of the line and can move with any speed up to the maximum speed 1 in any direction they wish and they all can communicate when they are co-located. However, the agents have different wireless communication abilities: while some are fully wireless and can send and receive messages at any distance, a subset of the agents are senders, they can only transmit messages wirelessly, and the rest are receivers, they can only receive messages wirelessly. The agents start at the same time and their communication abilities are known to each other from the start. Starting at the origin of the line, the goal of the agents is to collectively find a target/exit at an unknown location on the line while minimizing the evacuation time, defined as the time when the last agent reaches the target. We investigate the impact of such a mixed communication model on evacuation time on an infinite line for a group of cooperating agents. In particular, we provide evacuation algorithms and analyze the resulting competitive ratio (CR) of the evacuation time for such a group of agents. If the group has two agents of two different types, we give an optimal evacuation algorithm with competitive ratio CR = 3+2√2. If there is a single sender or fully wireless agent, and multiple receivers we prove that CR ∈ [2+√5,5], and if there are multiple senders and a single receiver or fully wireless agent, we show that CR ∈ [3,5.681319]. Any group consisting of only senders or only receivers requires competitive ratio 9, and any other combination of agents has competitive ratio 3.

Cite as

Jurek Czyzowicz, Ryan Killick, Evangelos Kranakis, Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, Denis Pankratov, and Sunil Shende. Group Evacuation on a Line by Agents with Different Communication Abilities. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 57:1-57:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{czyzowicz_et_al:LIPIcs.ISAAC.2021.57,
  author =	{Czyzowicz, Jurek and Killick, Ryan and Kranakis, Evangelos and Krizanc, Danny and Narayanan, Lata and Opatrny, Jaroslav and Pankratov, Denis and Shende, Sunil},
  title =	{{Group Evacuation on a Line by Agents with Different Communication Abilities}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{57:1--57:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.57},
  URN =		{urn:nbn:de:0030-drops-154903},
  doi =		{10.4230/LIPIcs.ISAAC.2021.57},
  annote =	{Keywords: Agent, Communication, Evacuation, Mobile, Receiver, Search, Sender}
}
Document
Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and Information Management
Energy Consumption of Group Search on a Line

Authors: Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis, Danny Krizanc, Manuel Lafond, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Consider two robots that start at the origin of the infinite line in search of an exit at an unknown location on the line. The robots can collaborate in the search, but can only communicate if they arrive at the same location at exactly the same time, i.e. they use the so-called face-to-face communication model. The group search time is defined as the worst-case time as a function of d, the distance of the exit from the origin, when both robots can reach the exit. It has long been known that for a single robot traveling at unit speed, the search time is at least 9d - o(d); a simple doubling strategy achieves this time bound. It was shown recently in [Chrobak et al., 2015] that k >= 2 robots traveling at unit speed also require at least 9d group search time. We investigate energy-time trade-offs in group search by two robots, where the energy loss experienced by a robot traveling a distance x at constant speed s is given by s^2 x, as motivated by energy consumption models in physics and engineering. Specifically, we consider the problem of minimizing the total energy used by the robots, under the constraints that the search time is at most a multiple c of the distance d and the speed of the robots is bounded by b. Motivation for this study is that for the case when robots must complete the search in 9d time with maximum speed one (b=1; c=9), a single robot requires at least 9d energy, while for two robots, all previously proposed algorithms consume at least 28d/3 energy. When the robots have bounded memory and can use only a constant number of fixed speeds, we generalize an algorithm described in [Baeza-Yates and Schott, 1995; Chrobak et al., 2015] to obtain a family of algorithms parametrized by pairs of b,c values that can solve the problem for the entire spectrum of these pairs for which the problem is solvable. In particular, for each such pair, we determine optimal (and in some cases nearly optimal) algorithms inducing the lowest possible energy consumption. We also propose a novel search algorithm that simultaneously achieves search time 9d and consumes energy 8.42588d. Our result shows that two robots can search on the line in optimal time 9d while consuming less total energy than a single robot within the same search time. Our algorithm uses robots that have unbounded memory, and a finite number of dynamically computed speeds. It can be generalized for any c, b with cb=9, and consumes energy 8.42588b^2d.

Cite as

Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis, Danny Krizanc, Manuel Lafond, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende. Energy Consumption of Group Search on a Line. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 137:1-137:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{czyzowicz_et_al:LIPIcs.ICALP.2019.137,
  author =	{Czyzowicz, Jurek and Georgiou, Konstantinos and Killick, Ryan and Kranakis, Evangelos and Krizanc, Danny and Lafond, Manuel and Narayanan, Lata and Opatrny, Jaroslav and Shende, Sunil},
  title =	{{Energy Consumption of Group Search on a Line}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{137:1--137:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.137},
  URN =		{urn:nbn:de:0030-drops-107138},
  doi =		{10.4230/LIPIcs.ICALP.2019.137},
  annote =	{Keywords: Evacuation, Exit, Line, Face-to-face Communication, Robots, Search}
}
Document
God Save the Queen

Authors: Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis, Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende

Published in: LIPIcs, Volume 100, 9th International Conference on Fun with Algorithms (FUN 2018)


Abstract
Queen Daniela of Sardinia is asleep at the center of a round room at the top of the tower in her castle. She is accompanied by her faithful servant, Eva. Suddenly, they are awakened by cries of "Fire". The room is pitch black and they are disoriented. There is exactly one exit from the room somewhere along its boundary. They must find it as quickly as possible in order to save the life of the queen. It is known that with two people searching while moving at maximum speed 1 anywhere in the room, the room can be evacuated (i.e., with both people exiting) in 1 + (2 pi)/3 + sqrt{3} ~~ 4.8264 time units and this is optimal [Czyzowicz et al., DISC'14], assuming that the first person to find the exit can directly guide the other person to the exit using her voice. Somewhat surprisingly, in this paper we show that if the goal is to save the queen (possibly leaving Eva behind to die in the fire) there is a slightly better strategy. We prove that this "priority" version of evacuation can be solved in time at most 4.81854. Furthermore, we show that any strategy for saving the queen requires time at least 3 + pi/6 + sqrt{3}/2 ~~ 4.3896 in the worst case. If one or both of the queen's other servants (Biddy and/or Lili) are with her, we show that the time bounds can be improved to 3.8327 for two servants, and 3.3738 for three servants. Finally we show lower bounds for these cases of 3.6307 (two servants) and 3.2017 (three servants). The case of n >= 4 is the subject of an independent study by Queen Daniela's Royal Scientific Team.

Cite as

Jurek Czyzowicz, Konstantinos Georgiou, Ryan Killick, Evangelos Kranakis, Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende. God Save the Queen. In 9th International Conference on Fun with Algorithms (FUN 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 100, pp. 16:1-16:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{czyzowicz_et_al:LIPIcs.FUN.2018.16,
  author =	{Czyzowicz, Jurek and Georgiou, Konstantinos and Killick, Ryan and Kranakis, Evangelos and Krizanc, Danny and Narayanan, Lata and Opatrny, Jaroslav and Shende, Sunil},
  title =	{{God Save the Queen}},
  booktitle =	{9th International Conference on Fun with Algorithms (FUN 2018)},
  pages =	{16:1--16:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-067-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{100},
  editor =	{Ito, Hiro and Leonardi, Stefano and Pagli, Linda and Prencipe, Giuseppe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2018.16},
  URN =		{urn:nbn:de:0030-drops-88074},
  doi =		{10.4230/LIPIcs.FUN.2018.16},
  annote =	{Keywords: Algorithm, Evacuation, Exit, Disk, Wireless Communication, Queen, Priority, Robots, Search, Servants, Trajectory}
}
Document
Search on a Line by Byzantine Robots

Authors: Jurek Czyzowicz, Konstantinos Georgiou, Evangelos Kranakis, Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende

Published in: LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)


Abstract
We consider the problem of fault-tolerant parallel search on an infinite line by n robots. Starting from the origin, the robots are required to find a target at an unknown location. The robots can move with maximum speed 1 and can communicate in wireless mode among themselves. However, among the n robots, there are f robots that exhibit byzantine faults. A faulty robot can fail to report the target even after reaching it, or it can make malicious claims about having found the target when in fact it has not. Given the presence of such faulty robots, the search for the target can only be concluded when the non-faulty robots have sufficient verification that the target has been found. We aim to design algorithms that minimize the value of S_d (n, f), the time to find a target at a distance d from the origin by n robots among which f are faulty. We give several different algorithms whose running time depends on the ratio f/n, the density of faulty robots, and also prove lower bounds. Our algorithms are optimal for some densities of faulty robots.

Cite as

Jurek Czyzowicz, Konstantinos Georgiou, Evangelos Kranakis, Danny Krizanc, Lata Narayanan, Jaroslav Opatrny, and Sunil Shende. Search on a Line by Byzantine Robots. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 27:1-27:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{czyzowicz_et_al:LIPIcs.ISAAC.2016.27,
  author =	{Czyzowicz, Jurek and Georgiou, Konstantinos and Kranakis, Evangelos and Krizanc, Danny and Narayanan, Lata and Opatrny, Jaroslav and Shende, Sunil},
  title =	{{Search on a Line by Byzantine Robots}},
  booktitle =	{27th International Symposium on Algorithms and Computation (ISAAC 2016)},
  pages =	{27:1--27:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-026-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{64},
  editor =	{Hong, Seok-Hee},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.27},
  URN =		{urn:nbn:de:0030-drops-67972},
  doi =		{10.4230/LIPIcs.ISAAC.2016.27},
  annote =	{Keywords: Cow path problem, Parallel search, Mobile robots, Wireless communication, Byzantine faults}
}
  • Refine by Type
  • 7 Document/PDF
  • 3 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 1 2021
  • 1 2019
  • 1 2018
  • 1 2016

  • Refine by Author
  • 4 Czyzowicz, Jurek
  • 4 Kranakis, Evangelos
  • 4 Krizanc, Danny
  • 4 Narayanan, Lata
  • 4 Opatrny, Jaroslav
  • Show More...

  • Refine by Series/Journal
  • 6 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 3 Computing methodologies → Mobile agents
  • 2 Theory of computation → Data structures design and analysis
  • 1 Computing methodologies → Distributed artificial intelligence
  • 1 Theory of computation → Distributed algorithms
  • 1 Theory of computation → Mixed discrete-continuous optimization
  • Show More...

  • Refine by Keyword
  • 3 Evacuation
  • 3 Search
  • 2 Exit
  • 2 Robots
  • 1 Agent
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail