4 Search Results for "Stern, Mitchell"


Document
Routing Few Robots in a Crowded Network

Authors: Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, Dominik Leko, and M. S. Ramanujan

Published in: LIPIcs, Volume 349, 19th International Symposium on Algorithms and Data Structures (WADS 2025)


Abstract
In Graph Coordinated Motion Planning, we are given a graph G some of whose vertices are occupied by robots, and we are asked to route k marked robots to their destinations while avoiding collisions and without exceeding a given budget 𝓁 on the number of robot moves. We continue the recent investigation of the problem [ICALP 2024], focusing on the parameter k that captures the task of routing a small number of robots in a possibly crowded graph. We prove that the problem is W[1]-hard parameterized by 𝓁 even for k = 1, but fixed-parameter tractable parameterized by k plus the treedepth of G. We complement the latter algorithm with an NP-hardness reduction which shows that both parameters are necessary to achieve tractability.

Cite as

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, Dominik Leko, and M. S. Ramanujan. Routing Few Robots in a Crowded Network. In 19th International Symposium on Algorithms and Data Structures (WADS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 349, pp. 20:1-20:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{deligkas_et_al:LIPIcs.WADS.2025.20,
  author =	{Deligkas, Argyrios and Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Leko, Dominik and Ramanujan, M. S.},
  title =	{{Routing Few Robots in a Crowded Network}},
  booktitle =	{19th International Symposium on Algorithms and Data Structures (WADS 2025)},
  pages =	{20:1--20:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-398-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{349},
  editor =	{Morin, Pat and Oh, Eunjin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WADS.2025.20},
  URN =		{urn:nbn:de:0030-drops-242516},
  doi =		{10.4230/LIPIcs.WADS.2025.20},
  annote =	{Keywords: graph coordinated motion planning, parameterized complexity, treedepth}
}
Document
Optimal Motion Planning for Two Square Robots in a Rectilinear Environment

Authors: Pankaj K. Agarwal, Mark de Berg, Benjamin Holmgren, Alex Steiger, and Martijn Struijs

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Let W ⊂ ℝ² be a rectilinear polygonal environment (that is, a rectilinear polygon potentially with holes) with a total of n vertices, and let A,B be two robots, each modeled as an axis-aligned unit square, that can move rectilinearly inside W. The goal is to compute an optimal collision-free motion plan π for A and B between a given pair of source and target configurations. We study two variants of this problem and obtain the following results. - Min-Sum: Here the goal is to compute a motion plan that minimizes the sum of the lengths of the paths of the robots. We present an O(n⁴log n)-time algorithm for computing an optimal solution to the min-sum problem. This is the first polynomial-time algorithm to compute an optimal, collision-free motion of two robots amid obstacles in a planar polygonal environment. - Min-Makespan: Here the robots can move with at most unit speed, and the goal is to compute a motion plan that minimizes the maximum time taken by a robot to reach its target location. We prove that the min-makespan variant is NP-hard.

Cite as

Pankaj K. Agarwal, Mark de Berg, Benjamin Holmgren, Alex Steiger, and Martijn Struijs. Optimal Motion Planning for Two Square Robots in a Rectilinear Environment. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2025.5,
  author =	{Agarwal, Pankaj K. and de Berg, Mark and Holmgren, Benjamin and Steiger, Alex and Struijs, Martijn},
  title =	{{Optimal Motion Planning for Two Square Robots in a Rectilinear Environment}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.5},
  URN =		{urn:nbn:de:0030-drops-231577},
  doi =		{10.4230/LIPIcs.SoCG.2025.5},
  annote =	{Keywords: Computational geometry, motion planning, multiple robots, rectilinear paths}
}
Document
A Minor-Testing Approach for Coordinated Motion Planning with Sliding Robots

Authors: Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
We study a variant of the Coordinated Motion Planning problem on undirected graphs, referred to herein as the Coordinated Sliding-Motion Planning (CSMP) problem. In this variant, we are given an undirected graph G, k robots R₁,… ,R_k positioned on distinct vertices of G, p ≤ k distinct destination vertices for robots R₁,… ,R_p, and 𝓁 ∈ ℕ. The problem is to decide if there is a serial schedule of at most 𝓁 moves (i.e., of makespan 𝓁) such that at the end of the schedule each robot with a destination reaches it, where a robot’s move is a free path (unoccupied by any robots) from its current position to an unoccupied vertex. The problem is known to be NP-hard even on full grids. It has been studied in several contexts, including coin movement and reconfiguration problems, with respect to feasibility, complexity, and approximation. Geometric variants of the problem, in which congruent geometric-shape robots (e.g., unit disk/squares) slide or translate in the Euclidean plane, have also been studied extensively. We investigate the parameterized complexity of CSMP with respect to two parameters: the number k of robots and the makespan 𝓁. As our first result, we present a fixed-parameter algorithm for CSMP parameterized by k. For our second result, we present a fixed-parameter algorithm parameterized by 𝓁 for the special case of CSMP in which only a single robot has a destination and the graph is planar. A crucial new ingredient for both of our results is that the solution admits a succinct representation as a small labeled topological minor of the input graph.

Cite as

Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan. A Minor-Testing Approach for Coordinated Motion Planning with Sliding Robots. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 44:1-44:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eiben_et_al:LIPIcs.SoCG.2025.44,
  author =	{Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Ramanujan, M. S.},
  title =	{{A Minor-Testing Approach for Coordinated Motion Planning with Sliding Robots}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{44:1--44:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.44},
  URN =		{urn:nbn:de:0030-drops-231966},
  doi =		{10.4230/LIPIcs.SoCG.2025.44},
  annote =	{Keywords: coordinated motion planning on graphs, parameterized complexity, topological minor testing, planar graphs}
}
Document
Invited Talk
Dynamic Posted-Price Mechanisms for the Blockchain Transaction Fee Market (Invited Talk)

Authors: Matheus V. X. Ferreira, Daniel J. Moroz, David C. Parkes, and Mitchell Stern

Published in: OASIcs, Volume 97, 3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021)


Abstract
In recent years, prominent blockchain systems such as Bitcoin and Ethereum have experienced explosive growth in transaction volume, leading to frequent surges in demand for limited block space and causing transaction fees to fluctuate by orders of magnitude. Existing systems sell space using first-price auctions; however, users find it difficult to estimate how much they need to bid in order to get their transactions accepted onto the chain. If they bid too low, their transactions can have long confirmation times. If they bid too high, they pay larger fees than necessary. In light of these issues, new transaction fee mechanisms have been proposed, most notably EIP-1559, aiming to provide better usability. EIP-1559 is a history-dependent mechanism that relies on block utilization to adjust a base fee. We propose an alternative design - a dynamic posted-price mechanism - which uses not only block utilization but also observable bids from past blocks to compute a posted price for subsequent blocks. We show its potential to reduce price volatility by providing examples for which the prices of EIP-1559 are unstable while the prices of the proposed mechanism are stable. More generally, whenever the demand for the blockchain stabilizes, we ask if our mechanism is able to converge to a stable state. Our main result provides sufficient conditions in a probabilistic setting for which the proposed mechanism is approximately welfare optimal and the prices are stable. Our main technical contribution towards establishing stability is an iterative algorithm that, given oracle access to a Lipschitz continuous and strictly concave function f, converges to a fixed point of f.

Cite as

Matheus V. X. Ferreira, Daniel J. Moroz, David C. Parkes, and Mitchell Stern. Dynamic Posted-Price Mechanisms for the Blockchain Transaction Fee Market (Invited Talk). In 3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021). Open Access Series in Informatics (OASIcs), Volume 97, p. 6:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ferreira_et_al:OASIcs.Tokenomics.2021.6,
  author =	{Ferreira, Matheus V. X. and Moroz, Daniel J. and Parkes, David C. and Stern, Mitchell},
  title =	{{Dynamic Posted-Price Mechanisms for the Blockchain Transaction Fee Market}},
  booktitle =	{3rd International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2021)},
  pages =	{6:1--6:1},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-220-4},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{97},
  editor =	{Gramoli, Vincent and Halaburda, Hanna and Pass, Rafael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Tokenomics.2021.6},
  URN =		{urn:nbn:de:0030-drops-159039},
  doi =		{10.4230/OASIcs.Tokenomics.2021.6},
  annote =	{Keywords: Blockchain, Posted-price mechanism, Credible, Incentive compatibility, Transaction fee market, first-price auction, EIP-1559}
}
  • Refine by Type
  • 4 Document/PDF
  • 3 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 1 2022

  • Refine by Author
  • 2 Eiben, Eduard
  • 2 Ganian, Robert
  • 2 Kanj, Iyad
  • 2 Ramanujan, M. S.
  • 1 Agarwal, Pankaj K.
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 2 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Security and privacy → Mathematical foundations of cryptography
  • 1 Theory of computation → Design and analysis of algorithms
  • 1 Theory of computation → Market equilibria

  • Refine by Keyword
  • 2 parameterized complexity
  • 1 Blockchain
  • 1 Computational geometry
  • 1 Credible
  • 1 EIP-1559
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail