5 Search Results for "Yu, Ching-Hua"


Document
Gaze Beyond Limits: Integrating Eye-Tracking and Augmented Reality for Next-Generation Spacesuit Interaction

Authors: Jiayu He, Yifan Li, Oliver R. Runswick, Peter D. Hodkinson, Jarle Steinberg, Felix Gorbatsevich, and Yang Gao

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Extravehicular activities (EVAs) are increasingly frequent in human spaceflight, particularly in spacecraft maintenance, scientific research, and planetary exploration. Spacesuits are essential for sustaining astronauts in the harsh environment of space, making their design a key factor in the success of EVA missions. The development of spacesuit technology has traditionally been driven by highly engineered solutions focused on life support, mission adaptability and operational efficiency. Modern spacesuits prioritize maintaining optimal internal temperature, humidity and pressure, as well as withstanding extreme temperature fluctuations and providing robust protection against micrometeoroid impacts and space debris. However, their bulkiness and rigidity impose significant physical strain on astronauts, reducing mobility and dexterity, particularly in tasks requiring fine motor control. The restricted field of view further complicates situational awareness, increasing the cognitive load during high-precision operations. While traditional spacesuits support basic EVA tasks, future space exploration shifting toward long-duration lunar and Martian surface missions demand more adaptive, intelligent, and astronaut-centric designs to overcome current constraints. To explore a next-generation spacesuit, this paper proposed an in-process eye-tracking embedded Augmented Reality (AR) Spacesuit System to enhance astronaut-environment interactions. By leveraging Segment-Anything Models (SAM) and Vision-Language Models (VLMs), we demonstrate a four-step approach to enable top-down gaze detection to minimize erroneous fixation data, gaze-based segmentation of objects of interest, real-time contextual assistance via AR overlays and hands-free operation within the spacesuit. This approach enhances real-time situational awareness and improves EVA task efficiency. We conclude with an exploration of the AR Helmet System’s potential in revolutionizing human-space interaction paradigms for future long-duration deep-space missions and discuss the further optimization of eye-tracking interactions using VLMs to predict astronaut intent and highlight relevant objects preemptively.

Cite as

Jiayu He, Yifan Li, Oliver R. Runswick, Peter D. Hodkinson, Jarle Steinberg, Felix Gorbatsevich, and Yang Gao. Gaze Beyond Limits: Integrating Eye-Tracking and Augmented Reality for Next-Generation Spacesuit Interaction. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 29:1-29:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{he_et_al:OASIcs.SpaceCHI.2025.29,
  author =	{He, Jiayu and Li, Yifan and Runswick, Oliver R. and Hodkinson, Peter D. and Steinberg, Jarle and Gorbatsevich, Felix and Gao, Yang},
  title =	{{Gaze Beyond Limits: Integrating Eye-Tracking and Augmented Reality for Next-Generation Spacesuit Interaction}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{29:1--29:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.29},
  URN =		{urn:nbn:de:0030-drops-240197},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.29},
  annote =	{Keywords: Augmented Reality (AR), Eye-Tracking, Cognitive Load/Workload, Segment Anything Model (SAM), Visual Language Models (VLMs)}
}
Document
Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference

Authors: Clinton Stipek, Taylor Hauser, Justin Epting, Jessica Moehl, and Daniel Adams

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
At a global scale, cities are growing and characterizing the built environment is essential for deeper understanding of human population patterns, urban development, energy usage, climate change impacts, among others. Buildings are a key component of the built environment and significant progress has been made in recent years to scale building footprint extractions from satellite datum and other remotely sensed products. Billions of building footprints have recently been released by companies such as Microsoft and Google at a global scale. However, research has shown that depending on the methods leveraged to produce a footprint dataset, discrepancies can arise in both the number and shape of footprints produced. Therefore, each footprint dataset should be examined and used on a case-by-case study. In this work, we find through two experiments on Oak Ridge National Laboratory and Microsoft footprints within the same geographic extent that our approach of inferring height from footprint morphology features is source agnostic. Regardless of the differences associated with the methods used to produce a building footprint dataset, our approach of inferring height was able to overcome these discrepancies between the products and generalize, as evidenced by 98% of our results being within 3m of the ground-truthed height. This signifies that our approach can be applied to the billions of open-source footprints which are freely available to infer height, a key building metric. This work impacts the broader domain of urban science in which building height is a key, and limiting factor.

Cite as

Clinton Stipek, Taylor Hauser, Justin Epting, Jessica Moehl, and Daniel Adams. Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 1:1-1:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{stipek_et_al:LIPIcs.GIScience.2025.1,
  author =	{Stipek, Clinton and Hauser, Taylor and Epting, Justin and Moehl, Jessica and Adams, Daniel},
  title =	{{Leveraging Open-Source Satellite-Derived Building Footprints for Height Inference}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{1:1--1:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.1},
  URN =		{urn:nbn:de:0030-drops-238306},
  doi =		{10.4230/LIPIcs.GIScience.2025.1},
  annote =	{Keywords: Building Height, Big Data, Machine Learning}
}
Document
Position
Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities

Authors: Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
The term life sciences refers to the disciplines that study living organisms and life processes, and include chemistry, biology, medicine, and a range of other related disciplines. Research efforts in life sciences are heavily data-driven, as they produce and consume vast amounts of scientific data, much of which is intrinsically relational and graph-structured. The volume of data and the complexity of scientific concepts and relations referred to therein promote the application of advanced knowledge-driven technologies for managing and interpreting data, with the ultimate aim to advance scientific discovery. In this survey and position paper, we discuss recent developments and advances in the use of graph-based technologies in life sciences and set out a vision for how these technologies will impact these fields into the future. We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations (explainable AI). We select a few exemplary use cases for each topic, discuss the challenges and open research questions within these topics, and conclude with a perspective and outlook that summarizes the overarching challenges and their potential solutions as a guide for future research.

Cite as

Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma. Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 5:1-5:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{chen_et_al:TGDK.1.1.5,
  author =	{Chen, Jiaoyan and Dong, Hang and Hastings, Janna and Jim\'{e}nez-Ruiz, Ernesto and L\'{o}pez, Vanessa and Monnin, Pierre and Pesquita, Catia and \v{S}koda, Petr and Tamma, Valentina},
  title =	{{Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:33},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.5},
  URN =		{urn:nbn:de:0030-drops-194791},
  doi =		{10.4230/TGDK.1.1.5},
  annote =	{Keywords: Knowledge graphs, Life science, Knowledge discovery, Explainable AI}
}
Document
On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation

Authors: Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Han-Hsuan Lin, Yao-Ting Lin, and Yu-Ching Shen

Published in: LIPIcs, Volume 264, 38th Computational Complexity Conference (CCC 2023)


Abstract
Hamiltonian simulation is one of the most important problems in the field of quantum computing. There have been extended efforts on designing algorithms for faster simulation, and the evolution time T for the simulation greatly affect algorithm runtime as expected. While there are some specific types of Hamiltonians that can be fast-forwarded, i.e., simulated within time o(T), for some large classes of Hamiltonians (e.g., all local/sparse Hamiltonians), existing simulation algorithms require running time at least linear in the evolution time T. On the other hand, while there exist lower bounds of Ω(T) circuit size for some large classes of Hamiltonian, these lower bounds do not rule out the possibilities of Hamiltonian simulation with large but "low-depth" circuits by running things in parallel. As a result, physical systems with system size scaling with T can potentially do a fast-forwarding simulation. Therefore, it is intriguing whether we can achieve fast Hamiltonian simulation with the power of parallelism. In this work, we give a negative result for the above open problem in various settings. In the oracle model, we prove that there are time-independent sparse Hamiltonians that cannot be simulated via an oracle circuit of depth o(T). In the plain model, relying on the random oracle heuristic, we show that there exist time-independent local Hamiltonians and time-dependent geometrically local Hamiltonians on n qubits that cannot be simulated via an oracle circuit of depth o(T/n^c), where the Hamiltonians act on n qubits, and c is a constant. Lastly, we generalize the above results and show that any simulators that are geometrically local Hamiltonians cannot do the simulation much faster than parallel quantum algorithms.

Cite as

Nai-Hui Chia, Kai-Min Chung, Yao-Ching Hsieh, Han-Hsuan Lin, Yao-Ting Lin, and Yu-Ching Shen. On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 33:1-33:45, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chia_et_al:LIPIcs.CCC.2023.33,
  author =	{Chia, Nai-Hui and Chung, Kai-Min and Hsieh, Yao-Ching and Lin, Han-Hsuan and Lin, Yao-Ting and Shen, Yu-Ching},
  title =	{{On the Impossibility of General Parallel Fast-Forwarding of Hamiltonian Simulation}},
  booktitle =	{38th Computational Complexity Conference (CCC 2023)},
  pages =	{33:1--33:45},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-282-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{264},
  editor =	{Ta-Shma, Amnon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.33},
  URN =		{urn:nbn:de:0030-drops-183038},
  doi =		{10.4230/LIPIcs.CCC.2023.33},
  annote =	{Keywords: Hamiltonian simulation, Depth lower bound, Parallel query lower bound}
}
Document
The Bottleneck Complexity of Secure Multiparty Computation

Authors: Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
In this work, we initiate the study of bottleneck complexity as a new communication efficiency measure for secure multiparty computation (MPC). Roughly, the bottleneck complexity of an MPC protocol is defined as the maximum communication complexity required by any party within the protocol execution. We observe that even without security, bottleneck communication complexity is an interesting measure of communication complexity for (distributed) functions and propose it as a fundamental area to explore. While achieving O(n) bottleneck complexity (where n is the number of parties) is straightforward, we show that: (1) achieving sublinear bottleneck complexity is not always possible, even when no security is required. (2) On the other hand, several useful classes of functions do have o(n) bottleneck complexity, when no security is required. Our main positive result is a compiler that transforms any (possibly insecure) efficient protocol with fixed communication-pattern for computing any functionality into a secure MPC protocol while preserving the bottleneck complexity of the underlying protocol (up to security parameter overhead). Given our compiler, an efficient protocol for any function f with sublinear bottleneck complexity can be transformed into an MPC protocol for f with the same bottleneck complexity. Along the way, we build cryptographic primitives - incremental fully-homomorphic encryption, succinct non-interactive arguments of knowledge with ID-based simulation-extractability property and verifiable protocol execution - that may be of independent interest.

Cite as

Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu. The Bottleneck Complexity of Secure Multiparty Computation. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{boyle_et_al:LIPIcs.ICALP.2018.24,
  author =	{Boyle, Elette and Jain, Abhishek and Prabhakaran, Manoj and Yu, Ching-Hua},
  title =	{{The Bottleneck Complexity of Secure Multiparty Computation}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{24:1--24:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.24},
  URN =		{urn:nbn:de:0030-drops-90288},
  doi =		{10.4230/LIPIcs.ICALP.2018.24},
  annote =	{Keywords: distributed protocols, secure computation, communication complexity}
}
  • Refine by Type
  • 5 Document/PDF
  • 3 Document/HTML

  • Refine by Publication Year
  • 2 2025
  • 2 2023
  • 1 2018

  • Refine by Author
  • 1 Adams, Daniel
  • 1 Boyle, Elette
  • 1 Chen, Jiaoyan
  • 1 Chia, Nai-Hui
  • 1 Chung, Kai-Min
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs
  • 1 OASIcs
  • 1 TGDK

  • Refine by Classification
  • 1 Applied computing
  • 1 Applied computing → Life and medical sciences
  • 1 Computing methodologies → Classification and regression trees
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Computing methodologies → Machine learning
  • Show More...

  • Refine by Keyword
  • 1 Augmented Reality (AR)
  • 1 Big Data
  • 1 Building Height
  • 1 Cognitive Load/Workload
  • 1 Depth lower bound
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail