Search Results

Documents authored by Alegría, Carlos


Document
Upward Pointset Embeddings of Planar st-Graphs

Authors: Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We study upward pointset embeddings (UPSEs) of planar st-graphs. Let G be a planar st-graph and let S ⊂ ℝ² be a pointset with |S| = |V(G)|. An UPSE of G on S is an upward planar straight-line drawing of G that maps the vertices of G to the points of S. We consider both the problem of testing the existence of an UPSE of G on S (UPSE Testing) and the problem of enumerating all UPSEs of G on S. We prove that UPSE Testing is NP-complete even for st-graphs that consist of a set of directed st-paths sharing only s and t. On the other hand, for n-vertex planar st-graphs whose maximum st-cutset has size k, we prove that it is possible to solve UPSE Testing in 𝒪(n^{4k}) time with 𝒪(n^{3k}) space, and to enumerate all UPSEs of G on S with 𝒪(n) worst-case delay, using 𝒪(k n^{4k} log n) space, after 𝒪(k n^{4k} log n) set-up time. Moreover, for an n-vertex st-graph whose underlying graph is a cycle, we provide a necessary and sufficient condition for the existence of an UPSE on a given poinset, which can be tested in 𝒪(n log n) time. Related to this result, we give an algorithm that, for a set S of n points, enumerates all the non-crossing monotone Hamiltonian cycles on S with 𝒪(n) worst-case delay, using 𝒪(n²) space, after 𝒪(n²) set-up time.

Cite as

Carlos Alegría, Susanna Caroppo, Giordano Da Lozzo, Marco D'Elia, Giuseppe Di Battista, Fabrizio Frati, Fabrizio Grosso, and Maurizio Patrignani. Upward Pointset Embeddings of Planar st-Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alegria_et_al:LIPIcs.GD.2024.24,
  author =	{Alegr{\'\i}a, Carlos and Caroppo, Susanna and Da Lozzo, Giordano and D'Elia, Marco and Di Battista, Giuseppe and Frati, Fabrizio and Grosso, Fabrizio and Patrignani, Maurizio},
  title =	{{Upward Pointset Embeddings of Planar st-Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.24},
  URN =		{urn:nbn:de:0030-drops-213082},
  doi =		{10.4230/LIPIcs.GD.2024.24},
  annote =	{Keywords: Upward pointset embeddings, planar st-graphs, st-cutset, non-crossing monotone Hamiltonian cycles, graph drawing enumeration}
}
Document
The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination

Authors: Carlos Alegría, Ioannis Mantas, Evanthia Papadopoulou, Marko Savić, Hendrik Schrezenmaier, Carlos Seara, and Martin Suderland

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We introduce the Voronoi Diagram of Rotating Rays, a Voronoi structure where the input sites are rays, and the distance function is the counterclockwise angular distance between a point and a ray-site. This novel Voronoi diagram is motivated by illumination and coverage problems, where a domain has to be covered by floodlights (wedges) of uniform angle, and the goal is to find the minimum angle necessary to cover the domain. We study the diagram in the plane, and we present structural properties, combinatorial complexity bounds, and a construction algorithm. If the rays are induced by a convex polygon, we show how to construct the ray Voronoi diagram within this polygon in linear time. Using this information, we can find in optimal linear time the Brocard angle, the minimum angle required to illuminate a convex polygon with floodlights of uniform angle. This last algorithm improves upon previous results, settling an interesting open problem.

Cite as

Carlos Alegría, Ioannis Mantas, Evanthia Papadopoulou, Marko Savić, Hendrik Schrezenmaier, Carlos Seara, and Martin Suderland. The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{alegria_et_al:LIPIcs.ESA.2021.5,
  author =	{Alegr{\'\i}a, Carlos and Mantas, Ioannis and Papadopoulou, Evanthia and Savi\'{c}, Marko and Schrezenmaier, Hendrik and Seara, Carlos and Suderland, Martin},
  title =	{{The Voronoi Diagram of Rotating Rays With applications to Floodlight Illumination}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{5:1--5:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.5},
  URN =		{urn:nbn:de:0030-drops-145865},
  doi =		{10.4230/LIPIcs.ESA.2021.5},
  annote =	{Keywords: rotating rays, Voronoi diagram, oriented angular distance, Brocard angle, floodlight illumination, coverage problems, art gallery problems}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail