Search Results

Documents authored by Bergé, Pierre


Document
The Canadian Traveller Problem on Outerplanar Graphs

Authors: Laurent Beaudou, Pierre Bergé, Vsevolod Chernyshev, Antoine Dailly, Yan Gerard, Aurélie Lagoutte, Vincent Limouzy, and Lucas Pastor

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
We study the k-Canadian Traveller Problem, where a weighted graph G = (V,E,ω) with a source s ∈ V and a target t ∈ V are given. This problem also has a hidden input E_* ⊊ E of cardinality at most k representing blocked edges. The objective is to travel from s to t with the minimum distance. At the beginning of the walk, the blockages E_* are unknown: the traveller discovers that an edge is blocked when visiting one of its endpoints. Online algorithms, also called strategies, have been proposed for this problem and assessed with the competitive ratio, i.e., the ratio between the distance actually traversed by the traveller divided by the distance he would have traversed knowing the blockages in advance. Even though the optimal competitive ratio is 2k+1 even on unit-weighted planar graphs of treewidth 2, we design a polynomial-time strategy achieving competitive ratio 9 on unit-weighted outerplanar graphs. This value 9 also stands as a lower bound for this family of graphs as we prove that, for any ε > 0, no strategy can achieve a competitive ratio 9-ε. Finally, we show that it is not possible to achieve a constant competitive ratio (independent of G and k) on weighted outerplanar graphs.

Cite as

Laurent Beaudou, Pierre Bergé, Vsevolod Chernyshev, Antoine Dailly, Yan Gerard, Aurélie Lagoutte, Vincent Limouzy, and Lucas Pastor. The Canadian Traveller Problem on Outerplanar Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beaudou_et_al:LIPIcs.MFCS.2024.19,
  author =	{Beaudou, Laurent and Berg\'{e}, Pierre and Chernyshev, Vsevolod and Dailly, Antoine and Gerard, Yan and Lagoutte, Aur\'{e}lie and Limouzy, Vincent and Pastor, Lucas},
  title =	{{The Canadian Traveller Problem on Outerplanar Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.19},
  URN =		{urn:nbn:de:0030-drops-205750},
  doi =		{10.4230/LIPIcs.MFCS.2024.19},
  annote =	{Keywords: Canadian Traveller Problem, Online algorithms, Competitive analysis, Outerplanar graphs}
}
Document
Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width

Authors: Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
For any ε > 0, we give a polynomial-time n^ε-approximation algorithm for Max Independent Set in graphs of bounded twin-width given with an O(1)-sequence. This result is derived from the following time-approximation trade-off: We establish an O(1)^{2^q-1}-approximation algorithm running in time exp(O_q(n^{2^{-q}})), for every integer q ⩾ 0. Guided by the same framework, we obtain similar approximation algorithms for Min Coloring and Max Induced Matching. In general graphs, all these problems are known to be highly inapproximable: for any ε > 0, a polynomial-time n^{1-ε}-approximation for any of them would imply that P=NP [Håstad, FOCS '96; Zuckerman, ToC '07; Chalermsook et al., SODA '13]. We generalize the algorithms for Max Independent Set and Max Induced Matching to the independent (induced) packing of any fixed connected graph H. In contrast, we show that such approximation guarantees on graphs of bounded twin-width given with an O(1)-sequence are very unlikely for Min Independent Dominating Set, and somewhat unlikely for Longest Path and Longest Induced Path. Regarding the existence of better approximation algorithms, there is a (very) light evidence that the obtained approximation factor of n^ε for Max Independent Set may be best possible. This is the first in-depth study of the approximability of problems in graphs of bounded twin-width. Prior to this paper, essentially the only such result was a polynomial-time O(1)-approximation algorithm for Min Dominating Set [Bonnet et al., ICALP '21].

Cite as

Pierre Bergé, Édouard Bonnet, Hugues Déprés, and Rémi Watrigant. Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{berge_et_al:LIPIcs.STACS.2023.10,
  author =	{Berg\'{e}, Pierre and Bonnet, \'{E}douard and D\'{e}pr\'{e}s, Hugues and Watrigant, R\'{e}mi},
  title =	{{Approximating Highly Inapproximable Problems on Graphs of Bounded Twin-Width}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.10},
  URN =		{urn:nbn:de:0030-drops-176629},
  doi =		{10.4230/LIPIcs.STACS.2023.10},
  annote =	{Keywords: Approximation algorithms, bounded twin-width}
}
Document
Track A: Algorithms, Complexity and Games
Deciding Twin-Width at Most 4 Is NP-Complete

Authors: Pierre Bergé, Édouard Bonnet, and Hugues Déprés

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We show that determining if an n-vertex graph has twin-width at most 4 is NP-complete, and requires time 2^Ω(n/log n) unless the Exponential-Time Hypothesis fails. Along the way, we give an elementary proof that n-vertex graphs subdivided at least 2 log n times have twin-width at most 4. We also show how to encode trigraphs H (2-edge colored graphs involved in the definition of twin-width) into graphs G, in the sense that every d-sequence (sequence of vertex contractions witnessing that the twin-width is at most d) of G inevitably creates H as an induced subtrigraph, whereas there exists a partial d-sequence that actually goes from G to H. We believe that these facts and their proofs can be of independent interest.

Cite as

Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding Twin-Width at Most 4 Is NP-Complete. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{berge_et_al:LIPIcs.ICALP.2022.18,
  author =	{Berg\'{e}, Pierre and Bonnet, \'{E}douard and D\'{e}pr\'{e}s, Hugues},
  title =	{{Deciding Twin-Width at Most 4 Is NP-Complete}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.18},
  URN =		{urn:nbn:de:0030-drops-163595},
  doi =		{10.4230/LIPIcs.ICALP.2022.18},
  annote =	{Keywords: Twin-width, lower bounds}
}
Document
Subquadratic-Time Algorithm for the Diameter and All Eccentricities on Median Graphs

Authors: Pierre Bergé, Guillaume Ducoffe, and Michel Habib

Published in: LIPIcs, Volume 219, 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)


Abstract
On sparse graphs, Roditty and Williams [2013] proved that no O(n^{2-ε})-time algorithm achieves an approximation factor smaller than 3/2 for the diameter problem unless SETH fails. We answer here an open question formulated in the literature: can we use the structural properties of median graphs to break this global quadratic barrier? We propose the first combinatorial algorithm computing exactly all eccentricities of a median graph in truly subquadratic time. Median graphs constitute the family of graphs which is the most studied in metric graph theory because their structure represents many other discrete and geometric concepts, such as CAT(0) cube complexes. Our result generalizes a recent one, stating that there is a linear-time algorithm for computing all eccentricities in median graphs with bounded dimension d, i.e. the dimension of the largest induced hypercube (note that 1-dimensional median graphs are exactly the forests). This prerequisite on d is not necessarily anymore to determine all eccentricities in subquadratic time. The execution time of our algorithm is O(n^{1.6456}log^{O(1)} n).

Cite as

Pierre Bergé, Guillaume Ducoffe, and Michel Habib. Subquadratic-Time Algorithm for the Diameter and All Eccentricities on Median Graphs. In 39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 219, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{berge_et_al:LIPIcs.STACS.2022.9,
  author =	{Berg\'{e}, Pierre and Ducoffe, Guillaume and Habib, Michel},
  title =	{{Subquadratic-Time Algorithm for the Diameter and All Eccentricities on Median Graphs}},
  booktitle =	{39th International Symposium on Theoretical Aspects of Computer Science (STACS 2022)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-222-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{219},
  editor =	{Berenbrink, Petra and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2022.9},
  URN =		{urn:nbn:de:0030-drops-158192},
  doi =		{10.4230/LIPIcs.STACS.2022.9},
  annote =	{Keywords: Diameter, Eccentricities, Metric graph theory, Median graphs, Hypercubes}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail