Search Results

Documents authored by Binucci, Carla


Document
Planar Stories of Graph Drawings: Algorithms and Experiments

Authors: Carla Binucci, Sabine Cornelsen, Walter Didimo, Seok-Hee Hong, Eleni Katsanou, Maurizio Patrignani, Antonios Symvonis, and Samuel Wolf

Published in: LIPIcs, Volume 357, 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)


Abstract
We address the problem of computing a dynamic visualization of a geometric graph G as a sequence of frames. Each frame shows only a portion of the graph but their union covers G entirely. The two main requirements of our dynamic visualization are: (i) guaranteeing drawing stability, so to preserve the user’s mental map; (ii) keeping the visual complexity of each frame low. To satisfy the first requirement, we never change the position of the vertices. Regarding the second requirement, we avoid edge crossings in each frame. More precisely, in the first frame we visualize a suitable subset of non-crossing edges; in each subsequent frame, exactly one new edge enters the visualization and all the edges that cross with it are deleted. We call such a sequence of frames a planar story of G. Our goal is to find a planar story whose minimum number of edges contemporarily displayed is maximized (i.e., a planar story that maximizes the minimum frame size). Besides studying our model from a theoretical point of view, we also design and experimentally compare different algorithms, both exact techniques and heuristics. These algorithms provide an array of alternative trade-offs between efficiency and effectiveness, also depending on the structure of the input graph.

Cite as

Carla Binucci, Sabine Cornelsen, Walter Didimo, Seok-Hee Hong, Eleni Katsanou, Maurizio Patrignani, Antonios Symvonis, and Samuel Wolf. Planar Stories of Graph Drawings: Algorithms and Experiments. In 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 357, pp. 32:1-32:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{binucci_et_al:LIPIcs.GD.2025.32,
  author =	{Binucci, Carla and Cornelsen, Sabine and Didimo, Walter and Hong, Seok-Hee and Katsanou, Eleni and Patrignani, Maurizio and Symvonis, Antonios and Wolf, Samuel},
  title =	{{Planar Stories of Graph Drawings: Algorithms and Experiments}},
  booktitle =	{33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)},
  pages =	{32:1--32:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-403-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{357},
  editor =	{Dujmovi\'{c}, Vida and Montecchiani, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2025.32},
  URN =		{urn:nbn:de:0030-drops-250182},
  doi =		{10.4230/LIPIcs.GD.2025.32},
  annote =	{Keywords: Graph Drawing, Dynamic Graphs, Graph Stories, Heuristics, ILP}
}
Document
Poster Abstract
Defective Linear Layouts of Graphs (Poster Abstract)

Authors: Michael A. Bekos, Carla Binucci, Emilio Di Giacomo, Walter Didimo, Luca Grilli, Maria Eleni Pavlidi, Alessandra Tappini, and Alexandra Weinberger

Published in: LIPIcs, Volume 357, 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)


Abstract
A linear layout of a graph defines a total order of the vertices and partitions the edges into either stacks or queues, i.e., crossing-free and non-nested sets of edges along the order, respectively. In this work, we study defective linear layouts that allow forbidden patterns among edges of the same set. Our focus is on k-defective stack layouts and k-defective queue layouts, in which the conflict graph representing the forbidden patterns among the edges of each stack or queue has maximum degree at most k.

Cite as

Michael A. Bekos, Carla Binucci, Emilio Di Giacomo, Walter Didimo, Luca Grilli, Maria Eleni Pavlidi, Alessandra Tappini, and Alexandra Weinberger. Defective Linear Layouts of Graphs (Poster Abstract). In 33rd International Symposium on Graph Drawing and Network Visualization (GD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 357, pp. 49:1-49:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bekos_et_al:LIPIcs.GD.2025.49,
  author =	{Bekos, Michael A. and Binucci, Carla and Di Giacomo, Emilio and Didimo, Walter and Grilli, Luca and Pavlidi, Maria Eleni and Tappini, Alessandra and Weinberger, Alexandra},
  title =	{{Defective Linear Layouts of Graphs}},
  booktitle =	{33rd International Symposium on Graph Drawing and Network Visualization (GD 2025)},
  pages =	{49:1--49:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-403-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{357},
  editor =	{Dujmovi\'{c}, Vida and Montecchiani, Fabrizio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2025.49},
  URN =		{urn:nbn:de:0030-drops-250350},
  doi =		{10.4230/LIPIcs.GD.2025.49},
  annote =	{Keywords: Linear layouts, stack layouts, queue layouts, defective layouts}
}
Document
On the Parameterized Complexity of Computing st-Orientations with Few Transitive Edges

Authors: Carla Binucci, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali, and Tommaso Piselli

Published in: LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)


Abstract
Orienting the edges of an undirected graph such that the resulting digraph satisfies some given constraints is a classical problem in graph theory, with multiple algorithmic applications. In particular, an st-orientation orients each edge of the input graph such that the resulting digraph is acyclic, and it contains a single source s and a single sink t. Computing an st-orientation of a graph can be done efficiently, and it finds notable applications in graph algorithms and in particular in graph drawing. On the other hand, finding an st-orientation with at most k transitive edges is more challenging and it was recently proven to be NP-hard already when k = 0. We strengthen this result by showing that the problem remains NP-hard even for graphs of bounded diameter, and for graphs of bounded vertex degree. These computational lower bounds naturally raise the question about which structural parameters can lead to tractable parameterizations of the problem. Our main result is a fixed-parameter tractable algorithm parameterized by treewidth.

Cite as

Carla Binucci, Giuseppe Liotta, Fabrizio Montecchiani, Giacomo Ortali, and Tommaso Piselli. On the Parameterized Complexity of Computing st-Orientations with Few Transitive Edges. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 18:1-18:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{binucci_et_al:LIPIcs.MFCS.2023.18,
  author =	{Binucci, Carla and Liotta, Giuseppe and Montecchiani, Fabrizio and Ortali, Giacomo and Piselli, Tommaso},
  title =	{{On the Parameterized Complexity of Computing st-Orientations with Few Transitive Edges}},
  booktitle =	{48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
  pages =	{18:1--18:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-292-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{272},
  editor =	{Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.18},
  URN =		{urn:nbn:de:0030-drops-185524},
  doi =		{10.4230/LIPIcs.MFCS.2023.18},
  annote =	{Keywords: st-orientations, parameterized complexity, graph drawing}
}
Document
Upward Book Embeddings of st-Graphs

Authors: Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze, and Maurizio Patrignani

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices of the graph appear in a topological ordering along the spine of the book. We show that testing whether a graph admits a kUBE is NP-complete for k >= 3. A hardness result for this problem was previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result, we focus our attention on k=2. On the algorithmic side, we present polynomial-time algorithms for testing the existence of 2UBEs of planar st-graphs with branchwidth b and of plane st-graphs whose faces have a special structure. These algorithms run in O(f(b)* n+n^3) time and O(n) time, respectively, where f is a singly-exponential function on b. Moreover, on the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE.

Cite as

Carla Binucci, Giordano Da Lozzo, Emilio Di Giacomo, Walter Didimo, Tamara Mchedlidze, and Maurizio Patrignani. Upward Book Embeddings of st-Graphs. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{binucci_et_al:LIPIcs.SoCG.2019.13,
  author =	{Binucci, Carla and Da Lozzo, Giordano and Di Giacomo, Emilio and Didimo, Walter and Mchedlidze, Tamara and Patrignani, Maurizio},
  title =	{{Upward Book Embeddings of st-Graphs}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.13},
  URN =		{urn:nbn:de:0030-drops-104170},
  doi =		{10.4230/LIPIcs.SoCG.2019.13},
  annote =	{Keywords: Upward Book Embeddings, st-Graphs, SPQR-trees, Branchwidth, Sphere-cut Decomposition}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail