Search Results

Documents authored by Cornelsen, Sabine


Document
Constrained Outer-String Representations

Authors: Therese Biedl, Sabine Cornelsen, Jan Kratochvíl, and Ignaz Rutter

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
An outer-string representation of a graph is an intersection representation in which each vertex is represented by a curve that is contained in the unit disk and has at least one endpoint on the boundary of the unit disk. In an outer-1-string representation the curves representing any two vertices are in addition allowed to intersect at most once. In this paper, we consider the following constrained version: Given a graph G plus a cyclic order v_1,…,v_n of the vertices in G, test whether G has an outer-string or an outer-1-string representation in which the curves representing v_1,…,v_n intersect the boundary of the unit disk in this order. We first show that a graph has an outer-string representation for all possible cyclic orders of the vertices if and only if the graph is the complement of a chordal graph. Then we turn towards the situation where one particular cyclic order of the vertices is fixed. We characterize the chordal graphs admitting a constrained outer-string representation and the trees and cycles admitting a constrained outer-1-string representation. The characterizations yield polynomial-time recognition and construction algorithms; in the case of outer-1-string representations the run time is linear. We also show how to decide in polynomial time whether an arbitrary graph admits a constrained L-shaped outer-1-string representation. In an L-shaped representation the curves are 1-bend orthogonal polylines anchored on a horizontal line, and they are contained in the half-plane below that line. However, not even all paths with a constrained outer-1-string representation admit one with L-shapes. We show that 2-bend orthogonal polylines are sufficient for trees and cycles with a constrained outer-1-string representation.

Cite as

Therese Biedl, Sabine Cornelsen, Jan Kratochvíl, and Ignaz Rutter. Constrained Outer-String Representations. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 10:1-10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{biedl_et_al:LIPIcs.GD.2024.10,
  author =	{Biedl, Therese and Cornelsen, Sabine and Kratochv{\'\i}l, Jan and Rutter, Ignaz},
  title =	{{Constrained Outer-String Representations}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{10:1--10:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.10},
  URN =		{urn:nbn:de:0030-drops-212942},
  doi =		{10.4230/LIPIcs.GD.2024.10},
  annote =	{Keywords: String representation, outer-string, outer-1-string, chordal graphs, trees, polynomial-time algorithms, computational complexity}
}
Document
The Price of Upwardness

Authors: Patrizio Angelini, Therese Biedl, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Seok-Hee Hong, Giuseppe Liotta, Maurizio Patrignani, Sergey Pupyrev, Ignaz Rutter, and Alexander Wolff

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Not every directed acyclic graph (DAG) whose underlying undirected graph is planar admits an upward planar drawing. We are interested in pushing the notion of upward drawings beyond planarity by considering upward k-planar drawings of DAGs in which the edges are monotonically increasing in a common direction and every edge is crossed at most k times for some integer k ≥ 1. We show that the number of crossings per edge in a monotone drawing is in general unbounded for the class of bipartite outerplanar, cubic, or bounded pathwidth DAGs. However, it is at most two for outerpaths and it is at most quadratic in the bandwidth in general. From the computational point of view, we prove that upward-k-planarity testing is NP-complete already for k = 1 and even for restricted instances for which upward planarity testing is polynomial. On the positive side, we can decide in linear time whether a single-source DAG admits an upward 1-planar drawing in which all vertices are incident to the outer face.

Cite as

Patrizio Angelini, Therese Biedl, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Seok-Hee Hong, Giuseppe Liotta, Maurizio Patrignani, Sergey Pupyrev, Ignaz Rutter, and Alexander Wolff. The Price of Upwardness. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.GD.2024.13,
  author =	{Angelini, Patrizio and Biedl, Therese and Chimani, Markus and Cornelsen, Sabine and Da Lozzo, Giordano and Hong, Seok-Hee and Liotta, Giuseppe and Patrignani, Maurizio and Pupyrev, Sergey and Rutter, Ignaz and Wolff, Alexander},
  title =	{{The Price of Upwardness}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.13},
  URN =		{urn:nbn:de:0030-drops-212977},
  doi =		{10.4230/LIPIcs.GD.2024.13},
  annote =	{Keywords: upward drawings, beyond planarity, upward k-planarity, upward outer-1-planarity}
}
Document
On Upward-Planar L-Drawings of Graphs

Authors: Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, and Giordano Da Lozzo

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded st-graph in which the edge (s,t) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time. We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.

Cite as

Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, and Giordano Da Lozzo. On Upward-Planar L-Drawings of Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.MFCS.2022.10,
  author =	{Angelini, Patrizio and Chaplick, Steven and Cornelsen, Sabine and Da Lozzo, Giordano},
  title =	{{On Upward-Planar L-Drawings of Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.10},
  URN =		{urn:nbn:de:0030-drops-168085},
  doi =		{10.4230/LIPIcs.MFCS.2022.10},
  annote =	{Keywords: graph drawing, planar L-drawings, directed graphs, bitonic st-ordering, upward planarity, series-parallel graphs}
}
Document
Morphing Contact Representations of Graphs

Authors: Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da Lozzo, and Vincenzo Roselli

Published in: LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)


Abstract
We consider the problem of morphing between contact representations of a plane graph. In a contact representation of a plane graph, vertices are realized by internally disjoint elements from a family of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent. These touchings also induce the same embedding as in the graph. In a morph between two contact representations we insist that at each time step (continuously throughout the morph) we have a contact representation of the same type. We focus on the case when the geometric objects are triangles that are the lower-right half of axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are one of the simplest families of shapes supporting this property. Thus, they provide a natural case to study regarding morphs of contact representations of plane graphs. We study piecewise linear morphs, where each step is a linear morph moving the endpoints of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time algorithm that decides whether there is a piecewise linear morph between two RT-representations of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs. As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph between every pair of RT-representations where the "top-most" triangle in both representations corresponds to the same vertex. This shows that the realization space of such RT-representations of any 4-connected plane triangulation forms a connected set.

Cite as

Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da Lozzo, and Vincenzo Roselli. Morphing Contact Representations of Graphs. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.SoCG.2019.10,
  author =	{Angelini, Patrizio and Chaplick, Steven and Cornelsen, Sabine and Da Lozzo, Giordano and Roselli, Vincenzo},
  title =	{{Morphing Contact Representations of Graphs}},
  booktitle =	{35th International Symposium on Computational Geometry (SoCG 2019)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-104-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{129},
  editor =	{Barequet, Gill and Wang, Yusu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.10},
  URN =		{urn:nbn:de:0030-drops-104145},
  doi =		{10.4230/LIPIcs.SoCG.2019.10},
  annote =	{Keywords: Contact representations, Triangulations, Planar morphs, Schnyder woods}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail