Search Results

Documents authored by Dalirrooyfard, Mina


Document
On Diameter Approximation in Directed Graphs

Authors: Amir Abboud, Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis (SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper bounds. In directed graphs, however, where only some of the upper bounds apply, much larger gaps remain. Since d(u,v) may not be the same as d(v,u), there are multiple ways to define the problem, the two most natural being the (one-way) diameter (max_(u,v) d(u,v)) and the roundtrip diameter (max_{u,v} d(u,v)+d(v,u)). In this paper we make progress on the outstanding open question for each of them. - We design the first algorithm for diameter in sparse directed graphs to achieve n^{1.5-ε} time with an approximation factor better than 2. The new upper bound trade-off makes the directed case appear more similar to the undirected case. Notably, this is the first algorithm for diameter in sparse graphs that benefits from fast matrix multiplication. - We design new hardness reductions separating roundtrip diameter from directed and undirected diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes k-Cycle hypothesis, and any (2-ε)-approximation would imply a breakthrough algorithm for approximate 𝓁_∞-Closest-Pair. Notably, these are the first conditional lower bounds for diameter that are not based on SETH.

Cite as

Amir Abboud, Mina Dalirrooyfard, Ray Li, and Virginia Vassilevska Williams. On Diameter Approximation in Directed Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 2:1-2:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abboud_et_al:LIPIcs.ESA.2023.2,
  author =	{Abboud, Amir and Dalirrooyfard, Mina and Li, Ray and Vassilevska Williams, Virginia},
  title =	{{On Diameter Approximation in Directed Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{2:1--2:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.2},
  URN =		{urn:nbn:de:0030-drops-186552},
  doi =		{10.4230/LIPIcs.ESA.2023.2},
  annote =	{Keywords: Diameter, Directed Graphs, Approximation Algorithms, Fine-grained complexity}
}
Document
A New Conjecture on Hardness of 2-CSP’s with Implications to Hardness of Densest k-Subgraph and Other Problems

Authors: Julia Chuzhoy, Mina Dalirrooyfard, Vadim Grinberg, and Zihan Tan

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We propose a new conjecture on hardness of 2-CSP’s, and show that new hardness of approximation results for Densest k-Subgraph and several other problems, including a graph partitioning problem, and a variation of the Graph Crossing Number problem, follow from this conjecture. The conjecture can be viewed as occupying a middle ground between the d-to-1 conjecture, and hardness results for 2-CSP’s that can be obtained via standard techniques, such as Parallel Repetition combined with standard 2-prover protocols for the 3SAT problem. We hope that this work will motivate further exploration of hardness of 2-CSP’s in the regimes arising from the conjecture. We believe that a positive resolution of the conjecture will provide a good starting point for other hardness of approximation proofs. Another contribution of our work is proving that the problems that we consider are roughly equivalent from the approximation perspective. Some of these problems arose in previous work, from which it appeared that they may be related to each other. We formalize this relationship in this work.

Cite as

Julia Chuzhoy, Mina Dalirrooyfard, Vadim Grinberg, and Zihan Tan. A New Conjecture on Hardness of 2-CSP’s with Implications to Hardness of Densest k-Subgraph and Other Problems. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 38:1-38:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chuzhoy_et_al:LIPIcs.ITCS.2023.38,
  author =	{Chuzhoy, Julia and Dalirrooyfard, Mina and Grinberg, Vadim and Tan, Zihan},
  title =	{{A New Conjecture on Hardness of 2-CSP’s with Implications to Hardness of Densest k-Subgraph and Other Problems}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{38:1--38:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.38},
  URN =		{urn:nbn:de:0030-drops-175411},
  doi =		{10.4230/LIPIcs.ITCS.2023.38},
  annote =	{Keywords: Hardness of Approximation, Densest k-Subgraph}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for Min-Distance Problems in DAGs

Authors: Mina Dalirrooyfard and Jenny Kaufmann

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Graph parameters such as the diameter, radius, and vertex eccentricities are not defined in a useful way in Directed Acyclic Graphs (DAGs) using the standard measure of distance, since for any two nodes, there is no path between them in one of the two directions. So it is natural to consider the distance between two nodes as the length of the shortest path in the direction in which this path exists, motivating the definition of the min-distance. The min-distance between two nodes u and v is the minimum of the shortest path distances from u to v and from v to u. As with the standard distance problems, the Strong Exponential Time Hypothesis [Impagliazzo-Paturi-Zane 2001, Calabro-Impagliazzo-Paturi 2009] leaves little hope for computing min-distance problems faster than computing All Pairs Shortest Paths, which can be solved in Õ(mn) time. So it is natural to resort to approximation algorithms in Õ(mn^{1-ε}) time for some positive ε. Abboud, Vassilevska W., and Wang [SODA 2016] first studied min-distance problems achieving constant factor approximation algorithms on DAGs, and Dalirrooyfard et al [ICALP 2019] gave the first constant factor approximation algorithms on general graphs for min-diameter, min-radius and min-eccentricities. Abboud et al obtained a 3-approximation algorithm for min-radius on DAGs which works in Õ(m√n) time, and showed that any (2-δ)-approximation requires n^{2-o(1)} time for any δ > 0, under the Hitting Set Conjecture. We close the gap, obtaining a 2-approximation algorithm which runs in Õ(m√n) time. As the lower bound of Abboud et al only works for sparse DAGs, we further show that our algorithm is conditionally tight for dense DAGs using a reduction from Boolean matrix multiplication. Moreover, Abboud et al obtained a linear time 2-approximation algorithm for min-diameter along with a lower bound stating that any (3/2-δ)-approximation algorithm for sparse DAGs requires n^{2-o(1)} time under SETH. We close this gap for dense DAGs by obtaining a 3/2-approximation algorithm which works in O(n^{2.350}) time and showing that the approximation factor is unlikely to be improved within O(n^{ω - o(1)}) time under the high dimensional Orthogonal Vectors Conjecture, where ω is the matrix multiplication exponent.

Cite as

Mina Dalirrooyfard and Jenny Kaufmann. Approximation Algorithms for Min-Distance Problems in DAGs. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 60:1-60:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dalirrooyfard_et_al:LIPIcs.ICALP.2021.60,
  author =	{Dalirrooyfard, Mina and Kaufmann, Jenny},
  title =	{{Approximation Algorithms for Min-Distance Problems in DAGs}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{60:1--60:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.60},
  URN =		{urn:nbn:de:0030-drops-141293},
  doi =		{10.4230/LIPIcs.ICALP.2021.60},
  annote =	{Keywords: Fine-grained complexity, Graph algorithms, Diameter, Radius, Eccentricities}
}
Document
Distributed Distance Approximation

Authors: Bertie Ancona, Keren Censor-Hillel, Mina Dalirrooyfard, Yuval Efron, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 184, 24th International Conference on Principles of Distributed Systems (OPODIS 2020)


Abstract
Diameter, radius and eccentricities are fundamental graph parameters, which are extensively studied in various computational settings. Typically, computing approximate answers can be much more efficient compared with computing exact solutions. In this paper, we give a near complete characterization of the trade-offs between approximation ratios and round complexity of distributed algorithms for approximating these parameters, with a focus on the weighted and directed variants. Furthermore, we study bi-chromatic variants of these parameters defined on a graph whose vertices are colored either red or blue, and one focuses only on distances for pairs of vertices that are colored differently. Motivated by applications in computational geometry, bi-chromatic diameter, radius and eccentricities have been recently studied in the sequential setting [Backurs et al. STOC'18, Dalirrooyfard et al. ICALP'19]. We provide the first distributed upper and lower bounds for such problems. Our technical contributions include introducing the notion of approximate pseudo-center, which extends the pseudo-centers of [Choudhary and Gold SODA'20], and presenting an efficient distributed algorithm for computing approximate pseudo-centers. On the lower bound side, our constructions introduce the usage of new functions into the framework of reductions from 2-party communication complexity to distributed algorithms.

Cite as

Bertie Ancona, Keren Censor-Hillel, Mina Dalirrooyfard, Yuval Efron, and Virginia Vassilevska Williams. Distributed Distance Approximation. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 184, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ancona_et_al:LIPIcs.OPODIS.2020.30,
  author =	{Ancona, Bertie and Censor-Hillel, Keren and Dalirrooyfard, Mina and Efron, Yuval and Vassilevska Williams, Virginia},
  title =	{{Distributed Distance Approximation}},
  booktitle =	{24th International Conference on Principles of Distributed Systems (OPODIS 2020)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-176-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{184},
  editor =	{Bramas, Quentin and Oshman, Rotem and Romano, Paolo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.30},
  URN =		{urn:nbn:de:0030-drops-135150},
  doi =		{10.4230/LIPIcs.OPODIS.2020.30},
  annote =	{Keywords: Distributed Computing, Distance Computation, Algorithms, Lower Bounds}
}
Document
Track A: Algorithms, Complexity and Games
Conditionally Optimal Approximation Algorithms for the Girth of a Directed Graph

Authors: Mina Dalirrooyfard and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
The girth is one of the most basic graph parameters, and its computation has been studied for many decades. Under widely believed fine-grained assumptions, computing the girth exactly is known to require mn^{1-o(1)} time, both in sparse and dense m-edge, n-node graphs, motivating the search for fast approximations. Fast good quality approximation algorithms for undirected graphs have been known for decades. For the girth in directed graphs, until recently the only constant factor approximation algorithms ran in O(n^ω) time, where ω < 2.373 is the matrix multiplication exponent. These algorithms have two drawbacks: (1) they only offer an improvement over the mn running time for dense graphs, and (2) the current fast matrix multiplication methods are impractical. The first constant factor approximation algorithm that runs in O(mn^{1-ε}) time for ε > 0 and all sparsities m was only recently obtained by Chechik et al. [STOC 2020]; it is also combinatorial. It is known that a better than 2-approximation algorithm for the girth in dense directed unweighted graphs needs n^{3-o(1)} time unless one uses fast matrix multiplication. Meanwhile, the best known approximation factor for a combinatorial algorithm running in O(mn^{1-ε}) time (by Chechik et al.) is 3. Is the true answer 2 or 3? The main result of this paper is a (conditionally) tight approximation algorithm for directed graphs. First, we show that under a popular hardness assumption, any algorithm, even one that exploits fast matrix multiplication, would need to take at least mn^{1-o(1)} time for some sparsity m if it achieves a (2-ε)-approximation for any ε > 0. Second we give a 2-approximation algorithm for the girth of unweighted graphs running in Õ(mn^{3/4}) time, and a (2+ε)-approximation algorithm (for any ε > 0) that works in weighted graphs and runs in Õ(m√ n) time. Our algorithms are combinatorial. We also obtain a (4+ε)-approximation of the girth running in Õ(mn^{√2-1}) time, improving upon the previous best Õ(m√n) running time by Chechik et al. Finally, we consider the computation of roundtrip spanners. We obtain a (5+ε)-approximate roundtrip spanner on Õ(n^{1.5}/ε²) edges in Õ(m√n/ε²) time. This improves upon the previous approximation factor (8+ε) of Chechik et al. for the same running time.

Cite as

Mina Dalirrooyfard and Virginia Vassilevska Williams. Conditionally Optimal Approximation Algorithms for the Girth of a Directed Graph. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 35:1-35:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{dalirrooyfard_et_al:LIPIcs.ICALP.2020.35,
  author =	{Dalirrooyfard, Mina and Vassilevska Williams, Virginia},
  title =	{{Conditionally Optimal Approximation Algorithms for the Girth of a Directed Graph}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{35:1--35:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.35},
  URN =		{urn:nbn:de:0030-drops-124421},
  doi =		{10.4230/LIPIcs.ICALP.2020.35},
  annote =	{Keywords: Shortest cycle, Girth, Graph algorithms, Approximation algorithms, Fine-grained complexity, Roundtrip Spanner}
}
Document
Track A: Algorithms, Complexity and Games
Approximation Algorithms for Min-Distance Problems

Authors: Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, Nicole Wein, Yinzhan Xu, and Yuancheng Yu

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We study fundamental graph parameters such as the Diameter and Radius in directed graphs, when distances are measured using a somewhat unorthodox but natural measure: the distance between u and v is the minimum of the shortest path distances from u to v and from v to u. The center node in a graph under this measure can for instance represent the optimal location for a hospital to ensure the fastest medical care for everyone, as one can either go to the hospital, or a doctor can be sent to help. By computing All-Pairs Shortest Paths, all pairwise distances and thus the parameters we study can be computed exactly in O~(mn) time for directed graphs on n vertices, m edges and nonnegative edge weights. Furthermore, this time bound is tight under the Strong Exponential Time Hypothesis [Roditty-Vassilevska W. STOC 2013] so it is natural to study how well these parameters can be approximated in O(mn^{1-epsilon}) time for constant epsilon>0. Abboud, Vassilevska Williams, and Wang [SODA 2016] gave a polynomial factor approximation for Diameter and Radius, as well as a constant factor approximation for both problems in the special case where the graph is a DAG. We greatly improve upon these bounds by providing the first constant factor approximations for Diameter, Radius and the related Eccentricities problem in general graphs. Additionally, we provide a hierarchy of algorithms for Diameter that gives a time/accuracy trade-off.

Cite as

Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, Nicole Wein, Yinzhan Xu, and Yuancheng Yu. Approximation Algorithms for Min-Distance Problems. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 46:1-46:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dalirrooyfard_et_al:LIPIcs.ICALP.2019.46,
  author =	{Dalirrooyfard, Mina and Williams, Virginia Vassilevska and Vyas, Nikhil and Wein, Nicole and Xu, Yinzhan and Yu, Yuancheng},
  title =	{{Approximation Algorithms for Min-Distance Problems}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{46:1--46:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.46},
  URN =		{urn:nbn:de:0030-drops-106223},
  doi =		{10.4230/LIPIcs.ICALP.2019.46},
  annote =	{Keywords: fine-grained complexity, graph algorithms, diameter, radius, eccentricities}
}
Document
Track A: Algorithms, Complexity and Games
Tight Approximation Algorithms for Bichromatic Graph Diameter and Related Problems

Authors: Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, and Nicole Wein

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
Some of the most fundamental and well-studied graph parameters are the Diameter (the largest shortest paths distance) and Radius (the smallest distance for which a "center" node can reach all other nodes). The natural and important ST-variant considers two subsets S and T of the vertex set and lets the ST-diameter be the maximum distance between a node in S and a node in T, and the ST-radius be the minimum distance for a node of S to reach all nodes of T. The bichromatic variant is the special case in which S and T partition the vertex set. In this paper we present a comprehensive study of the approximability of ST and Bichromatic Diameter, Radius, and Eccentricities, and variants, in graphs with and without directions and weights. We give the first nontrivial approximation algorithms for most of these problems, including time/accuracy trade-off upper and lower bounds. We show that nearly all of our obtained bounds are tight under the Strong Exponential Time Hypothesis (SETH), or the related Hitting Set Hypothesis. For instance, for Bichromatic Diameter in undirected weighted graphs with m edges, we present an O~(m^{3/2}) time 5/3-approximation algorithm, and show that under SETH, neither the running time, nor the approximation factor can be significantly improved while keeping the other unchanged.

Cite as

Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, and Nicole Wein. Tight Approximation Algorithms for Bichromatic Graph Diameter and Related Problems. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 47:1-47:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dalirrooyfard_et_al:LIPIcs.ICALP.2019.47,
  author =	{Dalirrooyfard, Mina and Williams, Virginia Vassilevska and Vyas, Nikhil and Wein, Nicole},
  title =	{{Tight Approximation Algorithms for Bichromatic Graph Diameter and Related Problems}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{47:1--47:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.47},
  URN =		{urn:nbn:de:0030-drops-106238},
  doi =		{10.4230/LIPIcs.ICALP.2019.47},
  annote =	{Keywords: approximation algorithms, fine-grained complexity, diameter, radius, eccentricities}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail