Search Results

Documents authored by Di Natale, Marco


Document
Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications

Authors: Gerlando Sciangula, Daniel Casini, Alessandro Biondi, Claudio Scordino, and Marco Di Natale

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
Many modern applications need to run on massively interconnected sets of heterogeneous nodes, ranging from IoT devices to edge nodes up to the Cloud. In this scenario, communication is often implemented using the publish-subscribe paradigm. The Data Distribution Service (DDS) is a popular middleware specification adopting such a paradigm. The DDS is becoming a key enabler for massively distributed real-time applications, with popular frameworks such as ROS 2 and AUTOSAR Adaptive building on it. However, no formal modeling and analysis of the timing properties of DDS has been provided to date. This paper fills this gap by providing an abstract model for DDS systems that can be generalized to any implementation compliant with the specification. A concrete instance of the generic DDS model is provided for the case of eProsima’s FastDDS, which is eventually used to provide a real-time analysis that bounds the data-delivery latency of DDS messages. Finally, this paper reports on an evaluation based on a representative automotive application from the WATERS 2019 challenge by Bosch.

Cite as

Gerlando Sciangula, Daniel Casini, Alessandro Biondi, Claudio Scordino, and Marco Di Natale. Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 9:1-9:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{sciangula_et_al:LIPIcs.ECRTS.2023.9,
  author =	{Sciangula, Gerlando and Casini, Daniel and Biondi, Alessandro and Scordino, Claudio and Di Natale, Marco},
  title =	{{Bounding the Data-Delivery Latency of DDS Messages in Real-Time Applications}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{9:1--9:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.9},
  URN =		{urn:nbn:de:0030-drops-180381},
  doi =		{10.4230/LIPIcs.ECRTS.2023.9},
  annote =	{Keywords: DDS, real-time systems, response-time analysis, end-to-end latency, CPA}
}
Document
Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses

Authors: Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale

Published in: LIPIcs, Volume 106, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
Most works in schedulability analysis theory are based on the assumption that constraints on the performance of the application can be expressed by a very limited set of timing constraints (often simply hard deadlines) on a task model. This model is insufficient to represent a large number of systems in which deadlines can be missed, or in which late task responses affect the performance, but not the correctness of the application. For systems with a possible temporary overload, models like the m-K deadline have been proposed in the past. However, the m-K model has several limitations since it does not consider the state of the system and is largely unaware of the way in which the performance is affected by deadline misses (except for critical failures). In this paper, we present a state-based representation of the evolution of a system with respect to each deadline hit or miss event. Our representation is much more general (while hopefully concise enough) to represent the evolution in time of the performance of time-sensitive systems with possible time overloads. We provide the theoretical foundations for our model and also show an application to a simple system to give examples of the state representations and their use.

Cite as

Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale. Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 106, pp. 10:1-10:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{pazzaglia_et_al:LIPIcs.ECRTS.2018.10,
  author =	{Pazzaglia, Paolo and Pannocchi, Luigi and Biondi, Alessandro and Di Natale, Marco},
  title =	{{Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses}},
  booktitle =	{30th Euromicro Conference on Real-Time Systems (ECRTS 2018)},
  pages =	{10:1--10:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-075-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{106},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2018.10},
  URN =		{urn:nbn:de:0030-drops-89930},
  doi =		{10.4230/LIPIcs.ECRTS.2018.10},
  annote =	{Keywords: control, real-time, cyber physical systems, weakly hard, deadline miss, performance}
}
Document
Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses (Artifact)

Authors: Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale

Published in: DARTS, Volume 4, Issue 2, Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
This document provides a brief description of the artifact material related to the paper "Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses". The code provided in the artifact implements the algorithms presented in the paper and all the experimental tests.

Cite as

Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale. Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses (Artifact). In Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Dagstuhl Artifacts Series (DARTS), Volume 4, Issue 2, pp. 4:1-4:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{pazzaglia_et_al:DARTS.4.2.4,
  author =	{Pazzaglia, Paolo and Pannocchi, Luigi and Biondi, Alessandro and Di Natale, Marco},
  title =	{{Beyond the Weakly Hard Model: Measuring the Performance Cost of Deadline Misses (Artifact)}},
  pages =	{4:1--4:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2018},
  volume =	{4},
  number =	{2},
  editor =	{Pazzaglia, Paolo and Pannocchi, Luigi and Biondi, Alessandro and Di Natale, Marco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.4.2.4},
  URN =		{urn:nbn:de:0030-drops-89728},
  doi =		{10.4230/DARTS.4.2.4},
  annote =	{Keywords: control, real-time, Cyber Physical Systems weakly hard, deadline miss, performance}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail