Search Results

Documents authored by Jacob, Ashwin


Document
Finding Long Directed Cycles Is Hard Even When DFVS Is Small or Girth Is Large

Authors: Ashwin Jacob, Michał Włodarczyk, and Meirav Zehavi

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the parameterized complexity of two classic problems on directed graphs: Hamiltonian Cycle and its generalization Longest Cycle. Since 2008, it is known that Hamiltonian Cycle is W[1]-hard when parameterized by directed treewidth [Lampis et al., ISSAC'08]. By now, the question of whether it is FPT parameterized by the directed feedback vertex set (DFVS) number has become a longstanding open problem. In particular, the DFVS number is the largest natural directed width measure studied in the literature. In this paper, we provide a negative answer to the question, showing that even for the DFVS number, the problem remains W[1]-hard. As a consequence, we also obtain that Longest Cycle is W[1]-hard on directed graphs when parameterized multiplicatively above girth, in contrast to the undirected case. This resolves an open question posed by Fomin et al. [ACM ToCT'21] and Gutin and Mnich [arXiv:2207.12278]. Our hardness results apply to the path versions of the problems as well. On the positive side, we show that Longest Path parameterized multiplicatively above girth belongs to the class XP.

Cite as

Ashwin Jacob, Michał Włodarczyk, and Meirav Zehavi. Finding Long Directed Cycles Is Hard Even When DFVS Is Small or Girth Is Large. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 65:1-65:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jacob_et_al:LIPIcs.ESA.2023.65,
  author =	{Jacob, Ashwin and W{\l}odarczyk, Micha{\l} and Zehavi, Meirav},
  title =	{{Finding Long Directed Cycles Is Hard Even When DFVS Is Small or Girth Is Large}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{65:1--65:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.65},
  URN =		{urn:nbn:de:0030-drops-187184},
  doi =		{10.4230/LIPIcs.ESA.2023.65},
  annote =	{Keywords: Hamiltonian cycle, longest path, directed feedback vertex set, directed graphs, parameterized complexity}
}
Document
Parameterized Complexity of Deletion to Scattered Graph Classes

Authors: Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman

Published in: LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)


Abstract
Graph-modification problems, where we add/delete a small number of vertices/edges to make the given graph to belong to a simpler graph class, is a well-studied optimization problem in all algorithmic paradigms including classical, approximation and parameterized complexity. Specifically, graph-deletion problems, where one needs to delete at most k vertices to place it in a given non-trivial hereditary (closed under induced subgraphs) graph class, captures several well-studied problems including Vertex Cover, Feedback Vertex Set, Odd Cycle Transveral, Cluster Vertex Deletion, and Perfect Deletion. Investigation into these problems in parameterized complexity has given rise to powerful tools and techniques. While a precise characterization of the graph classes for which the problem is fixed-parameter tractable (FPT) is elusive, it has long been known that if the graph class is characterized by a finite set of forbidden graphs, then the problem is FPT. In this paper, we initiate a study of a natural variation of the problem of deletion to scattered graph classes where we need to delete at most k vertices so that in the resulting graph, each connected component belongs to one of a constant number of graph classes. A simple hitting set based approach is no longer feasible even if each of the graph classes is characterized by finite forbidden sets. As our main result, we show that this problem (in the case where each graph class has a finite forbidden set) is fixed-parameter tractable by a O^*(2^(k^O(1))) algorithm, using a combination of the well-known techniques in parameterized complexity - iterative compression and important separators. Our approach follows closely that of a related problem in the context of satisfiability [Ganian, Ramanujan, Szeider, TAlg 2017], where one wants to find a small backdoor set so that the resulting CSP (constraint satisfaction problem) instance belongs to one of several easy instances of satisfiability. While we follow the main idea from this work, there are some challenges for our problem which we needed to overcome. When there are two graph classes with finite forbidden sets to get to, and if one of the forbidden sets has a path, then we show that the problem has a (better) singly exponential algorithm and a polynomial sized kernel. We also design an efficient FPT algorithm for a special case when one of the graph classes has an infinite forbidden set. Specifically, we give a O^*(4^k) algorithm to determine whether k vertices can be deleted from a given graph so that in the resulting graph, each connected component is a tree (the sparsest connected graph) or a clique (the densest connected graph).

Cite as

Ashwin Jacob, Diptapriyo Majumdar, and Venkatesh Raman. Parameterized Complexity of Deletion to Scattered Graph Classes. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 18:1-18:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jacob_et_al:LIPIcs.IPEC.2020.18,
  author =	{Jacob, Ashwin and Majumdar, Diptapriyo and Raman, Venkatesh},
  title =	{{Parameterized Complexity of Deletion to Scattered Graph Classes}},
  booktitle =	{15th International Symposium on Parameterized and Exact Computation (IPEC 2020)},
  pages =	{18:1--18:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-172-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{180},
  editor =	{Cao, Yixin and Pilipczuk, Marcin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.18},
  URN =		{urn:nbn:de:0030-drops-133210},
  doi =		{10.4230/LIPIcs.IPEC.2020.18},
  annote =	{Keywords: Parameterized Complexity, Scattered Graph Classes, Important Separators}
}
Document
Structural Parameterizations with Modulator Oblivion

Authors: Ashwin Jacob, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot

Published in: LIPIcs, Volume 180, 15th International Symposium on Parameterized and Exact Computation (IPEC 2020)


Abstract
It is known that problems like Vertex Cover, Feedback Vertex Set and Odd Cycle Transversal are polynomial time solvable in the class of chordal graphs. We consider these problems in a graph that has at most k vertices whose deletion results in a chordal graph, when parameterized by k. While this investigation fits naturally into the recent trend of what are called "structural parameterizations", here we assume that the deletion set is not given. One method to solve them is to compute a k-sized or an approximate (f(k) sized, for a function f) chordal vertex deletion set and then use the structural properties of the graph to design an algorithm. This method leads to at least k^O(k)n^O(1) running time when we use the known parameterized or approximation algorithms for finding a k-sized chordal deletion set on an n vertex graph. In this work, we design 2^O(k)n^O(1) time algorithms for these problems. Our algorithms do not compute a chordal vertex deletion set (or even an approximate solution). Instead, we construct a tree decomposition of the given graph in time 2^O(k)n^O(1) where each bag is a union of four cliques and O(k) vertices. We then apply standard dynamic programming algorithms over this special tree decomposition. This special tree decomposition can be of independent interest. Our algorithms are, what are sometimes called permissive in the sense that given an integer k, they detect whether the graph has no chordal vertex deletion set of size at most k or output the special tree decomposition and solve the problem. We also show lower bounds for the problems we deal with under the Strong Exponential Time Hypothesis (SETH).

Cite as

Ashwin Jacob, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Structural Parameterizations with Modulator Oblivion. In 15th International Symposium on Parameterized and Exact Computation (IPEC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 180, pp. 19:1-19:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jacob_et_al:LIPIcs.IPEC.2020.19,
  author =	{Jacob, Ashwin and Panolan, Fahad and Raman, Venkatesh and Sahlot, Vibha},
  title =	{{Structural Parameterizations with Modulator Oblivion}},
  booktitle =	{15th International Symposium on Parameterized and Exact Computation (IPEC 2020)},
  pages =	{19:1--19:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-172-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{180},
  editor =	{Cao, Yixin and Pilipczuk, Marcin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2020.19},
  URN =		{urn:nbn:de:0030-drops-133222},
  doi =		{10.4230/LIPIcs.IPEC.2020.19},
  annote =	{Keywords: Parameterized Complexity, Chordal Graph, Tree Decomposition, Strong Exponential Time Hypothesis}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail