Search Results

Documents authored by Kakugawa, Hirotsugu


Document
Crash-Tolerant Perpetual Exploration with Myopic Luminous Robots on Rings

Authors: Fukuhito Ooshita, Naoki Kitamura, Ryota Eguchi, Michiko Inoue, Hirotsugu Kakugawa, Sayaka Kamei, Masahiro Shibata, and Yuichi Sudo

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
We investigate crash-tolerant perpetual exploration algorithms by myopic luminous robots on ring networks. Myopic robots mean that they can observe nodes only within a certain fixed distance ϕ, and luminous robots mean that they have light devices that can emit a color from a set of colors. The goal of perpetual exploration is to ensure that robots, starting from specific initial positions and colors, move in such a way that every node is visited by at least one robot infinitely often. As a main contribution, we clarify the tight necessary and sufficient number of robots to realize perpetual exploration when at most f robots crash. In the fully synchronous model, we prove that f+2 robots are necessary and sufficient for any ϕ ≥ 1. In the semi-synchronous and asynchronous models, we prove that 3f+3 (resp., 2f+2) robots are necessary and sufficient if ϕ = 1 (resp., ϕ ≥ 2).

Cite as

Fukuhito Ooshita, Naoki Kitamura, Ryota Eguchi, Michiko Inoue, Hirotsugu Kakugawa, Sayaka Kamei, Masahiro Shibata, and Yuichi Sudo. Crash-Tolerant Perpetual Exploration with Myopic Luminous Robots on Rings. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ooshita_et_al:LIPIcs.OPODIS.2024.12,
  author =	{Ooshita, Fukuhito and Kitamura, Naoki and Eguchi, Ryota and Inoue, Michiko and Kakugawa, Hirotsugu and Kamei, Sayaka and Shibata, Masahiro and Sudo, Yuichi},
  title =	{{Crash-Tolerant Perpetual Exploration with Myopic Luminous Robots on Rings}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.12},
  URN =		{urn:nbn:de:0030-drops-225486},
  doi =		{10.4230/LIPIcs.OPODIS.2024.12},
  annote =	{Keywords: mobile robots, crash faults, LCM model, exploration}
}
Document
Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time

Authors: Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K. Datta, and Lawrence L. Larmore

Published in: LIPIcs, Volume 125, 22nd International Conference on Principles of Distributed Systems (OPODIS 2018)


Abstract
A loosely-stabilizing leader election protocol with polylogarithmic convergence time in the population protocol model is presented in this paper. In the population protocol model, which is a common abstract model of mobile sensor networks, it is known to be impossible to design a self-stabilizing leader election protocol. Thus, in our prior work, we introduced the concept of loose-stabilization, which is weaker than self-stabilization but has similar advantage as self-stabilization in practice. Following this work, several loosely-stabilizing leader election protocols are presented. The loosely-stabilizing leader election guarantees that, starting from an arbitrary configuration, the system reaches a safe configuration with a single leader within a relatively short time, and keeps the unique leader for an sufficiently long time thereafter. The convergence times of all the existing loosely-stabilizing protocols, i.e., the expected time to reach a safe configuration, are polynomial in n where n is the number of nodes (while the holding times to keep the unique leader are exponential in n). In this paper, a loosely-stabilizing protocol with polylogarithmic convergence time is presented. Its holding time is not exponential, but arbitrarily large polynomial in n.

Cite as

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, Toshimitsu Masuzawa, Ajoy K. Datta, and Lawrence L. Larmore. Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time. In 22nd International Conference on Principles of Distributed Systems (OPODIS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 125, pp. 30:1-30:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{sudo_et_al:LIPIcs.OPODIS.2018.30,
  author =	{Sudo, Yuichi and Ooshita, Fukuhito and Kakugawa, Hirotsugu and Masuzawa, Toshimitsu and Datta, Ajoy K. and Larmore, Lawrence L.},
  title =	{{Loosely-Stabilizing Leader Election with Polylogarithmic Convergence Time}},
  booktitle =	{22nd International Conference on Principles of Distributed Systems (OPODIS 2018)},
  pages =	{30:1--30:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-098-9},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{125},
  editor =	{Cao, Jiannong and Ellen, Faith and Rodrigues, Luis and Ferreira, Bernardo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2018.30},
  URN =		{urn:nbn:de:0030-drops-100901},
  doi =		{10.4230/LIPIcs.OPODIS.2018.30},
  annote =	{Keywords: Loose-stabilization, Population protocols, and Leader election}
}
Document
Brief Announcement
Brief Announcement: Loosely-stabilizing Leader Election with Polylogarithmic Convergence Time

Authors: Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Published in: LIPIcs, Volume 121, 32nd International Symposium on Distributed Computing (DISC 2018)


Abstract
We present a fast loosely-stabilizing leader election protocol in the population protocol model. It elects a unique leader in a poly-logarithmic time and holds the leader for a polynomial time with arbitrarily large degree in terms of parallel time, i.e, the number of steps per the population size.

Cite as

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Brief Announcement: Loosely-stabilizing Leader Election with Polylogarithmic Convergence Time. In 32nd International Symposium on Distributed Computing (DISC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 121, pp. 52:1-52:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{sudo_et_al:LIPIcs.DISC.2018.52,
  author =	{Sudo, Yuichi and Ooshita, Fukuhito and Kakugawa, Hirotsugu and Masuzawa, Toshimitsu},
  title =	{{Brief Announcement: Loosely-stabilizing Leader Election with Polylogarithmic Convergence Time}},
  booktitle =	{32nd International Symposium on Distributed Computing (DISC 2018)},
  pages =	{52:1--52:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-092-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{121},
  editor =	{Schmid, Ulrich and Widder, Josef},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2018.52},
  URN =		{urn:nbn:de:0030-drops-98410},
  doi =		{10.4230/LIPIcs.DISC.2018.52},
  annote =	{Keywords: Self-stabilization, Loose-stabilization, Population protocols}
}
Document
Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population Protocols Without Identifiers nor Random Numbers

Authors: Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Published in: LIPIcs, Volume 46, 19th International Conference on Principles of Distributed Systems (OPODIS 2015)


Abstract
In the population protocol model Angluin et al. proposed in 2004, there exists no self-stabilizing leader election protocol for complete graphs, arbitrary graphs, trees, lines, degree-bounded graphs and so on unless the protocol knows the exact number of nodes. To circumvent the impossibility, we introduced the concept of loose-stabilization in 2009, which relaxes the closure requirement of self-stabilization. A loosely-stabilizing protocol guarantees that starting from any initial configuration a system reaches a safe configuration, and after that, the system keeps its specification (e.g. the unique leader) not forever, but for a sufficiently long time (e.g. exponentially large time with respect to the number of nodes). Our previous works presented two loosely-stabilizing leader election protocols for arbitrary graphs; One uses agent identifiers and the other uses random numbers to elect a unique leader. In this paper, we present a loosely-stabilizing protocol that solves leader election on arbitrary graphs without agent identifiers nor random numbers. By the combination of virus-propagation and token-circulation, the proposed protocol achieves polynomial convergence time and exponential holding time without such external entities. Specifically, given upper bounds N and Delta of the number of nodes n and the maximum degree of nodes delta respectively, it reaches a safe configuration within O(m*n^3*d + m*N*Delta^2*log(N)) expected steps, and keeps the unique leader for Omega(N*e^N) expected steps where m is the number of edges and d is the diameter of the graph. To measure the time complexity of the protocol, we assume the uniformly random scheduler which is widely used in the field of the population protocols.

Cite as

Yuichi Sudo, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshimitsu Masuzawa. Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population Protocols Without Identifiers nor Random Numbers. In 19th International Conference on Principles of Distributed Systems (OPODIS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 46, pp. 14:1-14:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{sudo_et_al:LIPIcs.OPODIS.2015.14,
  author =	{Sudo, Yuichi and Ooshita, Fukuhito and Kakugawa, Hirotsugu and Masuzawa, Toshimitsu},
  title =	{{Loosely-Stabilizing Leader Election on Arbitrary Graphs in Population Protocols Without Identifiers nor Random Numbers}},
  booktitle =	{19th International Conference on Principles of Distributed Systems (OPODIS 2015)},
  pages =	{14:1--14:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-98-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{46},
  editor =	{Anceaume, Emmanuelle and Cachin, Christian and Potop-Butucaru, Maria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2015.14},
  URN =		{urn:nbn:de:0030-drops-66054},
  doi =		{10.4230/LIPIcs.OPODIS.2015.14},
  annote =	{Keywords: Loose-stabilization, Population protocols, Leader election}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail