Search Results

Documents authored by Kapralov, Michael


Document
Track A: Algorithms, Complexity and Games
On the Streaming Complexity of Expander Decomposition

Authors: Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we study the problem of finding (ε, ϕ)-expander decompositions of a graph in the streaming model, in particular for dynamic streams of edge insertions and deletions. The goal is to partition the vertex set so that every component induces a ϕ-expander, while the number of inter-cluster edges is only an ε fraction of the total volume. It was recently shown that there exists a simple algorithm to construct a (O(ϕ log n), ϕ)-expander decomposition of an n-vertex graph using Õ(n/ϕ²) bits of space [Filtser, Kapralov, Makarov, ITCS'23]. This result calls for understanding the extent to which a dependence in space on the sparsity parameter ϕ is inherent. We move towards answering this question on two fronts. We prove that a (O(ϕ log n), ϕ)-expander decomposition can be found using Õ(n) space, for every ϕ. At the core of our result is the first streaming algorithm for computing boundary-linked expander decompositions, a recently introduced strengthening of the classical notion [Goranci et al., SODA'21]. The key advantage is that a classical sparsifier [Fung et al., STOC'11], with size independent of ϕ, preserves the cuts inside the clusters of a boundary-linked expander decomposition within a multiplicative error. Notable algorithmic applications use sequences of expander decompositions, in particular one often repeatedly computes a decomposition of the subgraph induced by the inter-cluster edges (e.g., the seminal work of Spielman and Teng on spectral sparsifiers [Spielman, Teng, SIAM Journal of Computing 40(4)], or the recent maximum flow breakthrough [Chen et al., FOCS'22], among others). We prove that any streaming algorithm that computes a sequence of (O(ϕ log n), ϕ)-expander decompositions requires Ω̃(n/ϕ) bits of space, even in insertion only streams.

Cite as

Yu Chen, Michael Kapralov, Mikhail Makarov, and Davide Mazzali. On the Streaming Complexity of Expander Decomposition. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 46:1-46:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2024.46,
  author =	{Chen, Yu and Kapralov, Michael and Makarov, Mikhail and Mazzali, Davide},
  title =	{{On the Streaming Complexity of Expander Decomposition}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{46:1--46:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.46},
  URN =		{urn:nbn:de:0030-drops-201890},
  doi =		{10.4230/LIPIcs.ICALP.2024.46},
  annote =	{Keywords: Graph Sketching, Dynamic Streaming, Expander Decomposition}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Algorithms for Connectivity Augmentation

Authors: Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the k-connectivity augmentation problem (k-CAP) in the single-pass streaming model. Given a (k-1)-edge connected graph G = (V,E) that is stored in memory, and a stream of weighted edges (also called links) L with weights in {0,1,… ,W}, the goal is to choose a minimum weight subset L' ⊆ L of the links such that G' = (V,E∪ L') is k-edge connected. We give a (2+ε)-approximation algorithm for this problem which requires to store O(ε^{-1} nlog n) words. Moreover, we show the tightness of our result: Any algorithm with better than 2-approximation for the problem requires Ω(n²) bits of space even when k = 2. This establishes a gap between the optimal approximation factor one can obtain in the streaming vs the offline setting for k-CAP. We further consider a natural generalization to the fully streaming model where both E and L arrive in the stream in an arbitrary order. We show that this problem has a space lower bound that matches the best possible size of a spanner of the same approximation ratio. Following this, we give improved results for spanners on weighted graphs: We show a streaming algorithm that finds a (2t-1+ε)-approximate weighted spanner of size at most O(ε^{-1} n^{1+1/t}log n) for integer t, whereas the best prior streaming algorithm for spanner on weighted graphs had size depending on log W. We believe that this result is of independent interest. Using our spanner result, we provide an optimal O(t)-approximation for k-CAP in the fully streaming model with O(nk + n^{1+1/t}) words of space. Finally we apply our results to network design problems such as Steiner tree augmentation problem (STAP), k-edge connected spanning subgraph (k-ECSS) and the general Survivable Network Design problem (SNDP). In particular, we show a single-pass O(tlog k)-approximation for SNDP using O(kn^{1+1/t}) words of space, where k is the maximum connectivity requirement.

Cite as

Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian. Streaming Algorithms for Connectivity Augmentation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 93:1-93:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jin_et_al:LIPIcs.ICALP.2024.93,
  author =	{Jin, Ce and Kapralov, Michael and Mahabadi, Sepideh and Vakilian, Ali},
  title =	{{Streaming Algorithms for Connectivity Augmentation}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{93:1--93:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.93},
  URN =		{urn:nbn:de:0030-drops-202367},
  doi =		{10.4230/LIPIcs.ICALP.2024.93},
  annote =	{Keywords: streaming algorithms, connectivity augmentation}
}
Document
RANDOM
On Constructing Spanners from Random Gaussian Projections

Authors: Sepehr Assadi, Michael Kapralov, and Huacheng Yu

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
Graph sketching is a powerful paradigm for analyzing graph structure via linear measurements introduced by Ahn, Guha, and McGregor (SODA'12) that has since found numerous applications in streaming, distributed computing, and massively parallel algorithms, among others. Graph sketching has proven to be quite successful for various problems such as connectivity, minimum spanning trees, edge or vertex connectivity, and cut or spectral sparsifiers. Yet, the problem of approximating shortest path metric of a graph, and specifically computing a spanner, is notably missing from the list of successes. This has turned the status of this fundamental problem into one of the most longstanding open questions in this area. We present a partial explanation of this lack of success by proving a strong lower bound for a large family of graph sketching algorithms that encompasses prior work on spanners and many (but importantly not also all) related cut-based problems mentioned above. Our lower bound matches the algorithmic bounds of the recent result of Filtser, Kapralov, and Nouri (SODA'21), up to lower order terms, for constructing spanners via the same graph sketching family. This establishes near-optimality of these bounds, at least restricted to this family of graph sketching techniques, and makes progress on a conjecture posed in this latter work.

Cite as

Sepehr Assadi, Michael Kapralov, and Huacheng Yu. On Constructing Spanners from Random Gaussian Projections. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 57:1-57:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.APPROX/RANDOM.2023.57,
  author =	{Assadi, Sepehr and Kapralov, Michael and Yu, Huacheng},
  title =	{{On Constructing Spanners from Random Gaussian Projections}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{57:1--57:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.57},
  URN =		{urn:nbn:de:0030-drops-188821},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.57},
  annote =	{Keywords: sketching algorithm, lower bound, graph spanner}
}
Document
Expander Decomposition in Dynamic Streams

Authors: Arnold Filtser, Michael Kapralov, and Mikhail Makarov

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In this paper we initiate the study of expander decompositions of a graph G = (V, E) in the streaming model of computation. The goal is to find a partitioning 𝒞 of vertices V such that the subgraphs of G induced by the clusters C ∈ 𝒞 are good expanders, while the number of intercluster edges is small. Expander decompositions are classically constructed by a recursively applying balanced sparse cuts to the input graph. In this paper we give the first implementation of such a recursive sparsest cut process using small space in the dynamic streaming model. Our main algorithmic tool is a new type of cut sparsifier that we refer to as a power cut sparsifier - it preserves cuts in any given vertex induced subgraph (or, any cluster in a fixed partition of V) to within a (δ, ε)-multiplicative/additive error with high probability. The power cut sparsifier uses Õ(n/εδ) space and edges, which we show is asymptotically tight up to polylogarithmic factors in n for constant δ.

Cite as

Arnold Filtser, Michael Kapralov, and Mikhail Makarov. Expander Decomposition in Dynamic Streams. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 50:1-50:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{filtser_et_al:LIPIcs.ITCS.2023.50,
  author =	{Filtser, Arnold and Kapralov, Michael and Makarov, Mikhail},
  title =	{{Expander Decomposition in Dynamic Streams}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{50:1--50:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.50},
  URN =		{urn:nbn:de:0030-drops-175534},
  doi =		{10.4230/LIPIcs.ITCS.2023.50},
  annote =	{Keywords: Streaming, expander decomposition, graph sparsifiers}
}
Document
Noisy Boolean Hidden Matching with Applications

Authors: Michael Kapralov, Amulya Musipatla, Jakab Tardos, David P. Woodruff, and Samson Zhou

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
The Boolean Hidden Matching (BHM) problem, introduced in a seminal paper of Gavinsky et al. [STOC'07], has played an important role in lower bounds for graph problems in the streaming model (e.g., subgraph counting, maximum matching, MAX-CUT, Schatten p-norm approximation). The BHM problem typically leads to Ω(√n) space lower bounds for constant factor approximations, with the reductions generating graphs that consist of connected components of constant size. The related Boolean Hidden Hypermatching (BHH) problem provides Ω(n^{1-1/t}) lower bounds for 1+O(1/t) approximation, for integers t ≥ 2. The corresponding reductions produce graphs with connected components of diameter about t, and essentially show that long range exploration is hard in the streaming model with an adversarial order of updates. In this paper we introduce a natural variant of the BHM problem, called noisy BHM (and its natural noisy BHH variant), that we use to obtain stronger than Ω(√n) lower bounds for approximating a number of the aforementioned problems in graph streams when the input graphs consist only of components of diameter bounded by a fixed constant. We next introduce and study the graph classification problem, where the task is to test whether the input graph is isomorphic to a given graph. As a first step, we use the noisy BHM problem to show that the problem of classifying whether an underlying graph is isomorphic to a complete binary tree in insertion-only streams requires Ω(n) space, which seems challenging to show using either BHM or BHH.

Cite as

Michael Kapralov, Amulya Musipatla, Jakab Tardos, David P. Woodruff, and Samson Zhou. Noisy Boolean Hidden Matching with Applications. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 91:1-91:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kapralov_et_al:LIPIcs.ITCS.2022.91,
  author =	{Kapralov, Michael and Musipatla, Amulya and Tardos, Jakab and Woodruff, David P. and Zhou, Samson},
  title =	{{Noisy Boolean Hidden Matching with Applications}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{91:1--91:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.91},
  URN =		{urn:nbn:de:0030-drops-156876},
  doi =		{10.4230/LIPIcs.ITCS.2022.91},
  annote =	{Keywords: Boolean Hidden Matching, Lower Bounds, Communication Complexity, Streaming Algorithms}
}
Document
A Simple Sublinear-Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling

Authors: Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
In the subgraph counting problem, we are given a (large) input graph G(V, E) and a (small) target graph H (e.g., a triangle); the goal is to estimate the number of occurrences of H in G. Our focus here is on designing sublinear-time algorithms for approximately computing number of occurrences of H in G in the setting where the algorithm is given query access to G. This problem has been studied in several recent papers which primarily focused on specific families of graphs H such as triangles, cliques, and stars. However, not much is known about approximate counting of arbitrary graphs H in the literature. This is in sharp contrast to the closely related subgraph enumeration problem that has received significant attention in the database community as the database join problem. The AGM bound shows that the maximum number of occurrences of any arbitrary subgraph H in a graph G with m edges is O(m^{rho(H)}), where rho(H) is the fractional edge-cover of H, and enumeration algorithms with matching runtime are known for any H. We bridge this gap between subgraph counting and subgraph enumeration by designing a simple sublinear-time algorithm that can estimate the number of occurrences of any arbitrary graph H in G, denoted by #H, to within a (1 +/- epsilon)-approximation with high probability in O(m^{rho(H)}/#H) * poly(log(n),1/epsilon) time. Our algorithm is allowed the standard set of queries for general graphs, namely degree queries, pair queries and neighbor queries, plus an additional edge-sample query that returns an edge chosen uniformly at random. The performance of our algorithm matches those of Eden et al. [FOCS 2015, STOC 2018] for counting triangles and cliques and extend them to all choices of subgraph H under the additional assumption of edge-sample queries.

Cite as

Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A Simple Sublinear-Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 6:1-6:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{assadi_et_al:LIPIcs.ITCS.2019.6,
  author =	{Assadi, Sepehr and Kapralov, Michael and Khanna, Sanjeev},
  title =	{{A Simple Sublinear-Time Algorithm for Counting Arbitrary Subgraphs via Edge Sampling}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{6:1--6:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.6},
  URN =		{urn:nbn:de:0030-drops-100996},
  doi =		{10.4230/LIPIcs.ITCS.2019.6},
  annote =	{Keywords: Sublinear-time algorithms, Subgraph counting, AGM bound}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail