Search Results

Documents authored by Martin-Dorel, Érik


Document
Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users

Authors: Ana de Almeida Borges, Annalí Casanueva Artís, Jean-Rémy Falleri, Emilio Jesús Gallego Arias, Érik Martin-Dorel, Karl Palmskog, Alexander Serebrenik, and Théo Zimmermann

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
The Coq Community Survey 2022 was an online public survey of users of the Coq proof assistant conducted during February 2022. Broadly, the survey asked about use of Coq features, user interfaces, libraries, plugins, and tools, views on renaming Coq and Coq improvements, and also demographic data such as education and experience with Coq and other proof assistants and programming languages. The survey received 466 submitted responses, making it the largest survey of users of an interactive theorem prover (ITP) so far. We present the design of the survey, a summary of key results, and analysis of answers relevant to ITP technology development and usage. In particular, we analyze user characteristics associated with adoption of tools and libraries and make comparisons to adjacent software communities. Notably, we find that experience has significant impact on Coq user behavior, including on usage of tools, libraries, and integrated development environments.

Cite as

Ana de Almeida Borges, Annalí Casanueva Artís, Jean-Rémy Falleri, Emilio Jesús Gallego Arias, Érik Martin-Dorel, Karl Palmskog, Alexander Serebrenik, and Théo Zimmermann. Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 12:1-12:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dealmeidaborges_et_al:LIPIcs.ITP.2023.12,
  author =	{de Almeida Borges, Ana and Casanueva Art{\'\i}s, Annal{\'\i} and Falleri, Jean-R\'{e}my and Gallego Arias, Emilio Jes\'{u}s and Martin-Dorel, \'{E}rik and Palmskog, Karl and Serebrenik, Alexander and Zimmermann, Th\'{e}o},
  title =	{{Lessons for Interactive Theorem Proving Researchers from a Survey of Coq Users}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{12:1--12:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.12},
  URN =		{urn:nbn:de:0030-drops-183875},
  doi =		{10.4230/LIPIcs.ITP.2023.12},
  annote =	{Keywords: Coq, Community, Survey, Statistical Analysis}
}
Document
Bel-Games: A Formal Theory of Games of Incomplete Information Based on Belief Functions in the Coq Proof Assistant

Authors: Pierre Pomeret-Coquot, Hélène Fargier, and Érik Martin-Dorel

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Decision theory and game theory are both interdisciplinary domains that focus on modelling and {analyzing} decision-making processes. On the one hand, decision theory aims to account for the possible behaviors of an agent with respect to an uncertain situation. It thus provides several frameworks to describe the decision-making processes in this context, including that of belief functions. On the other hand, game theory focuses on multi-agent decisions, typically with probabilistic uncertainty (if any), hence the so-called class of Bayesian games. In this paper, we use the Coq/SSReflect proof assistant to formally prove the results we obtained in [Pierre Pomeret{-}Coquot et al., 2022]. First, we formalize a general theory of belief functions with finite support, and structures and solutions concepts from game theory. On top of that, we extend Bayesian games to the theory of belief functions, so that we obtain a more expressive class of games we refer to as Bel games; it makes it possible to better capture human behaviors with respect to lack of information. Next, we provide three different proofs of an extended version of the so-called Howson-Rosenthal’s theorem, showing that Bel games can be casted into games of complete information, i.e., without any uncertainty. We thus embed this class of games into classical game theory, enabling the use of existing algorithms.

Cite as

Pierre Pomeret-Coquot, Hélène Fargier, and Érik Martin-Dorel. Bel-Games: A Formal Theory of Games of Incomplete Information Based on Belief Functions in the Coq Proof Assistant. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 25:1-25:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{pomeretcoquot_et_al:LIPIcs.ITP.2023.25,
  author =	{Pomeret-Coquot, Pierre and Fargier, H\'{e}l\`{e}ne and Martin-Dorel, \'{E}rik},
  title =	{{Bel-Games: A Formal Theory of Games of Incomplete Information Based on Belief Functions in the Coq Proof Assistant}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{25:1--25:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.25},
  URN =		{urn:nbn:de:0030-drops-184001},
  doi =		{10.4230/LIPIcs.ITP.2023.25},
  annote =	{Keywords: Game of Incomplete Information, Belief Function Theory, Coq Proof Assistant, SSReflect Proof Language, MathComp Library}
}
Document
Primitive Floats in Coq

Authors: Guillaume Bertholon, Érik Martin-Dorel, and Pierre Roux

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
Some mathematical proofs involve intensive computations, for instance: the four-color theorem, Hales' theorem on sphere packing (formerly known as the Kepler conjecture) or interval arithmetic. For numerical computations, floating-point arithmetic enjoys widespread usage thanks to its efficiency, despite the introduction of rounding errors. Formal guarantees can be obtained on floating-point algorithms based on the IEEE 754 standard, which precisely specifies floating-point arithmetic and its rounding modes, and a proof assistant such as Coq, that enjoys efficient computation capabilities. Coq offers machine integers, however floating-point arithmetic still needed to be emulated using these integers. A modified version of Coq is presented that enables using the machine floating-point operators. The main obstacles to such an implementation and its soundness are discussed. Benchmarks show potential performance gains of two orders of magnitude.

Cite as

Guillaume Bertholon, Érik Martin-Dorel, and Pierre Roux. Primitive Floats in Coq. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bertholon_et_al:LIPIcs.ITP.2019.7,
  author =	{Bertholon, Guillaume and Martin-Dorel, \'{E}rik and Roux, Pierre},
  title =	{{Primitive Floats in Coq}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.7},
  URN =		{urn:nbn:de:0030-drops-110629},
  doi =		{10.4230/LIPIcs.ITP.2019.7},
  annote =	{Keywords: Coq formal proofs, floating-point arithmetic, reflexive tactics, Cholesky decomposition}
}
Document
A Formal Study of Boolean Games with Random Formulas as Payoff Functions

Authors: Érik Martin-Dorel and Sergei Soloviev

Published in: LIPIcs, Volume 97, 22nd International Conference on Types for Proofs and Programs (TYPES 2016)


Abstract
In this paper, we present a probabilistic analysis of Boolean games. We consider the class of Boolean games where payoff functions are given by random Boolean formulas. This permits to study certain properties of this class in its totality, such as the probability of existence of a winning strategy, including its asymptotic behaviour. With the help of the Coq proof assistant, we develop a Coq library of Boolean games, to provide a formal proof of our results, and a basis for further developments.

Cite as

Érik Martin-Dorel and Sergei Soloviev. A Formal Study of Boolean Games with Random Formulas as Payoff Functions. In 22nd International Conference on Types for Proofs and Programs (TYPES 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 97, pp. 14:1-14:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{martindorel_et_al:LIPIcs.TYPES.2016.14,
  author =	{Martin-Dorel, \'{E}rik and Soloviev, Sergei},
  title =	{{A Formal Study of Boolean Games with Random Formulas as Payoff Functions}},
  booktitle =	{22nd International Conference on Types for Proofs and Programs (TYPES 2016)},
  pages =	{14:1--14:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-065-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{97},
  editor =	{Ghilezan, Silvia and Geuvers, Herman and Ivetic, Jelena},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2016.14},
  URN =		{urn:nbn:de:0030-drops-98486},
  doi =		{10.4230/LIPIcs.TYPES.2016.14},
  annote =	{Keywords: Boolean games, Random process, Coq formal proofs}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail