Search Results

Documents authored by Masarík, Tomáš


Found 3 Possible Name Variants:

Masarík, Tomáš

Document
On the Uncrossed Number of Graphs

Authors: Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G to be drawn without crossings while allowing multiple different drawings of G. More formally, a collection 𝒟 of drawings of G is uncrossed if, for each edge e of G, there is a drawing in 𝒟 such that e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in some uncrossed collection of G. No exact values of the uncrossed numbers have been determined yet, not even for simple graph classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD 2023]. We also present a strong general lower bound on unc(G) in terms of the number of vertices and edges of G. Moreover, we prove NP-hardness of the related problem of determining the edge crossing number of a graph G, which is the smallest number of edges of G taken over all drawings of G that participate in a crossing. This problem was posed as open by Schaefer in his book [Crossing Numbers of Graphs 2018].

Cite as

Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner. On the Uncrossed Number of Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balko_et_al:LIPIcs.GD.2024.18,
  author =	{Balko, Martin and Hlin\v{e}n\'{y}, Petr and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Orthaber, Joachim and Vogtenhuber, Birgit and Wagner, Mirko H.},
  title =	{{On the Uncrossed Number of Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.18},
  URN =		{urn:nbn:de:0030-drops-213028},
  doi =		{10.4230/LIPIcs.GD.2024.18},
  annote =	{Keywords: Uncrossed Number, Crossing Number, Planarity, Thickness}
}
Document
List Locally Surjective Homomorphisms in Hereditary Graph Classes

Authors: Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V(H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H,F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family 𝒮 consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H ∈ {P₃,C₄} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F ∈ 𝒮 (unless the ETH fails).

Cite as

Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk. List Locally Surjective Homomorphisms in Hereditary Graph Classes. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.ISAAC.2022.30,
  author =	{Dvo\v{r}\'{a}k, Pavel and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Krawczyk, Monika and Rz\k{a}\.{z}ewski, Pawe{\l} and \.{Z}uk, Aneta},
  title =	{{List Locally Surjective Homomorphisms in Hereditary Graph Classes}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{30:1--30:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.30},
  URN =		{urn:nbn:de:0030-drops-173154},
  doi =		{10.4230/LIPIcs.ISAAC.2022.30},
  annote =	{Keywords: Homomorphism, Hereditary graphs, Subexponential-time algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gyárfás' Path Argument

Authors: Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We revisit recent developments for the Maximum Weight Independent Set problem in graphs excluding a subdivided claw S_{t,t,t} as an induced subgraph [Chudnovsky, Pilipczuk, Pilipczuk, Thomassé, SODA 2020] and provide a subexponential-time algorithm with improved running time 2^𝒪(√nlog n) and a quasipolynomial-time approximation scheme with improved running time 2^𝒪(ε^{-1} log⁵ n). The Gyárfás' path argument, a powerful tool that is the main building block for many algorithms in P_t-free graphs, ensures that given an n-vertex P_t-free graph, in polynomial time we can find a set P of at most t-1 vertices, such that every connected component of G-N[P] has at most n/2 vertices. Our main technical contribution is an analog of this result for S_{t,t,t}-free graphs: given an n-vertex S_{t,t,t}-free graph, in polynomial time we can find a set P of 𝒪(t log n) vertices and an extended strip decomposition (an appropriate analog of the decomposition into connected components) of G-N[P] such that every particle (an appropriate analog of a connected component to recurse on) of the said extended strip decomposition has at most n/2 vertices.

Cite as

Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski. Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gyárfás' Path Argument. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 93:1-93:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{majewski_et_al:LIPIcs.ICALP.2022.93,
  author =	{Majewski, Konrad and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Okrasa, Karolina and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Soko{\l}owski, Marek},
  title =	{{Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gy\'{a}rf\'{a}s' Path Argument}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{93:1--93:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.93},
  URN =		{urn:nbn:de:0030-drops-164343},
  doi =		{10.4230/LIPIcs.ICALP.2022.93},
  annote =	{Keywords: Max Independent Set, subdivided claw, QPTAS, subexponential-time algorithm}
}
Document
U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited

Authors: Jan Kratochvíl, Tomáš Masařík, and Jana Novotná

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Interval graphs, intersection graphs of segments on a real line (intervals), play a key role in the study of algorithms and special structural properties. Unit interval graphs, their proper subclass, where each interval has a unit length, has also been extensively studied. We study mixed unit interval graphs - a generalization of unit interval graphs where each interval has still a unit length, but intervals of more than one type (open, closed, semi-closed) are allowed. This small modification captures a much richer class of graphs. In particular, mixed unit interval graphs are not claw-free, compared to unit interval graphs. Heggernes, Meister, and Papadopoulos defined a representation of unit interval graphs called the bubble model which turned out to be useful in algorithm design. We extend this model to the class of mixed unit interval graphs and demonstrate the advantages of this generalized model by providing a subexponential-time algorithm for solving the MaxCut problem on mixed unit interval graphs. In addition, we derive a polynomial-time algorithm for certain subclasses of mixed unit interval graphs. We point out a substantial mistake in the proof of the polynomiality of the MaxCut problem on unit interval graphs by Boyaci, Ekim, and Shalom (2017). Hence, the time complexity of this problem on unit interval graphs remains open. We further provide a better algorithmic upper-bound on the clique-width of mixed unit interval graphs.

Cite as

Jan Kratochvíl, Tomáš Masařík, and Jana Novotná. U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 57:1-57:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kratochvil_et_al:LIPIcs.MFCS.2020.57,
  author =	{Kratochv{\'\i}l, Jan and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana},
  title =	{{U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{57:1--57:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.57},
  URN =		{urn:nbn:de:0030-drops-127247},
  doi =		{10.4230/LIPIcs.MFCS.2020.57},
  annote =	{Keywords: Interval Graphs, Mixed Unit Interval Graphs, MaxCut Problem, Clique Width, Subexponential Algorithm, Bubble Model}
}
Document
Packing Directed Circuits Quarter-Integrally

Authors: Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
The celebrated Erdős-Pósa theorem states that every undirected graph that does not admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(k log k). After being known for long as Younger’s conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph G there is no family of k cycles such that every vertex of G is in at most four of the cycles, then there exists a feedback vertex set in G of size O(k^4). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers a and b, if a directed graph G has directed treewidth Omega(a^6 b^8 log^2(ab)), then one can find in G a family of a subgraphs, each of directed treewidth at least b, such that every vertex of G is in at most four subgraphs.

Cite as

Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge. Packing Directed Circuits Quarter-Integrally. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 72:1-72:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{masarik_et_al:LIPIcs.ESA.2019.72,
  author =	{Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Muzi, Irene and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Sorge, Manuel},
  title =	{{Packing Directed Circuits Quarter-Integrally}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{72:1--72:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.72},
  URN =		{urn:nbn:de:0030-drops-111938},
  doi =		{10.4230/LIPIcs.ESA.2019.72},
  annote =	{Keywords: Directed graphs, graph algorithms, linkage, Erd\H{o}s–P\'{o}sa property}
}
Document
Parameterized Complexity of Fair Vertex Evaluation Problems

Authors: Dušan Knop, Tomáš Masařík, and Tomáš Toufar

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
A prototypical graph problem is centered around a graph-theoretic property for a set of vertices and a solution to it is a set of vertices for which the desired property holds. The task is to decide whether, in the given graph, there exists a solution of a certain quality, where we use size as a quality measure. In this work, we are changing the measure to the fair measure (cf. Lin and Sahni [Li-Shin Lin and Sartaj Sahni, 1989]). The fair measure of a set of vertices S is (at most) k if the number of neighbors in the set S of any vertex (in the input graph) does not exceed k. One possible way to study graph problems is by defining the property in a certain logic. For a given objective, an evaluation problem is to find a set (of vertices) that simultaneously minimizes the assumed measure and satisfies an appropriate formula. More formally, we study the {MSO} Fair Vertex Evaluation, where the graph-theoretic property is described by an {MSO} formula. In the presented paper we show that there is an FPT algorithm for the {MSO} Fair Vertex Evaluation problem for formulas with one free variable parameterized by the twin cover number of the input graph and the size of the formula. One may define an extended variant of {MSO} Fair Vertex Evaluation for formulas with l free variables; here we measure a maximum number of neighbors in each of the l sets. However, such variant is {W[1]}-hard for parameter l even on graphs with twin cover one. Furthermore, we study the Fair Vertex Cover (Fair VC) problem. Fair VC is among the simplest problems with respect to the demanded property (i.e., the rest forms an edgeless graph). On the negative side, Fair VC is {W[1]}-hard when parameterized by both treedepth and feedback vertex set of the input graph. On the positive side, we provide an FPT algorithm for the parameter modular width.

Cite as

Dušan Knop, Tomáš Masařík, and Tomáš Toufar. Parameterized Complexity of Fair Vertex Evaluation Problems. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{knop_et_al:LIPIcs.MFCS.2019.33,
  author =	{Knop, Du\v{s}an and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Toufar, Tom\'{a}\v{s}},
  title =	{{Parameterized Complexity of Fair Vertex Evaluation Problems}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.33},
  URN =		{urn:nbn:de:0030-drops-109775},
  doi =		{10.4230/LIPIcs.MFCS.2019.33},
  annote =	{Keywords: Fair objective, metatheorem, fair vertex cover, twin cover, modular width}
}
Document
Colouring (P_r+P_s)-Free Graphs

Authors: Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika Slívová

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
The k-Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for a fixed integer k such that no two adjacent vertices are coloured alike. If each vertex u must be assigned a colour from a prescribed list L(u) subseteq {1,...,k}, then we obtain the List k-Colouring problem. A graph G is H-free if G does not contain H as an induced subgraph. We continue an extensive study into the complexity of these two problems for H-free graphs. We prove that List 3-Colouring is polynomial-time solvable for (P_2+P_5)-free graphs and for (P_3+P_4)-free graphs. Combining our results with known results yields complete complexity classifications of 3-Colouring and List 3-Colouring on H-free graphs for all graphs H up to seven vertices. We also prove that 5-Colouring is NP-complete for (P_3+P_5)-free graphs.

Cite as

Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika Slívová. Colouring (P_r+P_s)-Free Graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{klimosova_et_al:LIPIcs.ISAAC.2018.5,
  author =	{Klimosov\'{a}, Tereza and Mal{\'\i}k, Josef and Masar{\'\i}k, Tom\'{a}s and Novotn\'{a}, Jana and Paulusma, Dani\"{e}l and Sl{\'\i}vov\'{a}, Veronika},
  title =	{{Colouring (P\underliner+P\underlines)-Free Graphs}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.5},
  URN =		{urn:nbn:de:0030-drops-99533},
  doi =		{10.4230/LIPIcs.ISAAC.2018.5},
  annote =	{Keywords: vertex colouring, H-free graph, linear forest}
}
Document
Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

Authors: Pavel Dvorák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masarík, Tomáš Toufar, and Pavel Veselý

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.

Cite as

Pavel Dvorák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masarík, Tomáš Toufar, and Pavel Veselý. Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.STACS.2018.26,
  author =	{Dvor\'{a}k, Pavel and Feldmann, Andreas Emil and Knop, Du\v{s}an and Masar{\'\i}k, Tom\'{a}\v{s} and Toufar, Tom\'{a}\v{s} and Vesel\'{y}, Pavel},
  title =	{{Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.26},
  URN =		{urn:nbn:de:0030-drops-85158},
  doi =		{10.4230/LIPIcs.STACS.2018.26},
  annote =	{Keywords: Steiner Tree, Steiner Forest, Approximation Algorithms, Parameterized Algorithms, Lossy Kernelization}
}

Masarík, Tomás

Document
On the Uncrossed Number of Graphs

Authors: Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G to be drawn without crossings while allowing multiple different drawings of G. More formally, a collection 𝒟 of drawings of G is uncrossed if, for each edge e of G, there is a drawing in 𝒟 such that e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in some uncrossed collection of G. No exact values of the uncrossed numbers have been determined yet, not even for simple graph classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD 2023]. We also present a strong general lower bound on unc(G) in terms of the number of vertices and edges of G. Moreover, we prove NP-hardness of the related problem of determining the edge crossing number of a graph G, which is the smallest number of edges of G taken over all drawings of G that participate in a crossing. This problem was posed as open by Schaefer in his book [Crossing Numbers of Graphs 2018].

Cite as

Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner. On the Uncrossed Number of Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balko_et_al:LIPIcs.GD.2024.18,
  author =	{Balko, Martin and Hlin\v{e}n\'{y}, Petr and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Orthaber, Joachim and Vogtenhuber, Birgit and Wagner, Mirko H.},
  title =	{{On the Uncrossed Number of Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.18},
  URN =		{urn:nbn:de:0030-drops-213028},
  doi =		{10.4230/LIPIcs.GD.2024.18},
  annote =	{Keywords: Uncrossed Number, Crossing Number, Planarity, Thickness}
}
Document
List Locally Surjective Homomorphisms in Hereditary Graph Classes

Authors: Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V(H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H,F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family 𝒮 consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H ∈ {P₃,C₄} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F ∈ 𝒮 (unless the ETH fails).

Cite as

Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk. List Locally Surjective Homomorphisms in Hereditary Graph Classes. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.ISAAC.2022.30,
  author =	{Dvo\v{r}\'{a}k, Pavel and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Krawczyk, Monika and Rz\k{a}\.{z}ewski, Pawe{\l} and \.{Z}uk, Aneta},
  title =	{{List Locally Surjective Homomorphisms in Hereditary Graph Classes}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{30:1--30:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.30},
  URN =		{urn:nbn:de:0030-drops-173154},
  doi =		{10.4230/LIPIcs.ISAAC.2022.30},
  annote =	{Keywords: Homomorphism, Hereditary graphs, Subexponential-time algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gyárfás' Path Argument

Authors: Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We revisit recent developments for the Maximum Weight Independent Set problem in graphs excluding a subdivided claw S_{t,t,t} as an induced subgraph [Chudnovsky, Pilipczuk, Pilipczuk, Thomassé, SODA 2020] and provide a subexponential-time algorithm with improved running time 2^𝒪(√nlog n) and a quasipolynomial-time approximation scheme with improved running time 2^𝒪(ε^{-1} log⁵ n). The Gyárfás' path argument, a powerful tool that is the main building block for many algorithms in P_t-free graphs, ensures that given an n-vertex P_t-free graph, in polynomial time we can find a set P of at most t-1 vertices, such that every connected component of G-N[P] has at most n/2 vertices. Our main technical contribution is an analog of this result for S_{t,t,t}-free graphs: given an n-vertex S_{t,t,t}-free graph, in polynomial time we can find a set P of 𝒪(t log n) vertices and an extended strip decomposition (an appropriate analog of the decomposition into connected components) of G-N[P] such that every particle (an appropriate analog of a connected component to recurse on) of the said extended strip decomposition has at most n/2 vertices.

Cite as

Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski. Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gyárfás' Path Argument. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 93:1-93:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{majewski_et_al:LIPIcs.ICALP.2022.93,
  author =	{Majewski, Konrad and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Okrasa, Karolina and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Soko{\l}owski, Marek},
  title =	{{Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gy\'{a}rf\'{a}s' Path Argument}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{93:1--93:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.93},
  URN =		{urn:nbn:de:0030-drops-164343},
  doi =		{10.4230/LIPIcs.ICALP.2022.93},
  annote =	{Keywords: Max Independent Set, subdivided claw, QPTAS, subexponential-time algorithm}
}
Document
U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited

Authors: Jan Kratochvíl, Tomáš Masařík, and Jana Novotná

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Interval graphs, intersection graphs of segments on a real line (intervals), play a key role in the study of algorithms and special structural properties. Unit interval graphs, their proper subclass, where each interval has a unit length, has also been extensively studied. We study mixed unit interval graphs - a generalization of unit interval graphs where each interval has still a unit length, but intervals of more than one type (open, closed, semi-closed) are allowed. This small modification captures a much richer class of graphs. In particular, mixed unit interval graphs are not claw-free, compared to unit interval graphs. Heggernes, Meister, and Papadopoulos defined a representation of unit interval graphs called the bubble model which turned out to be useful in algorithm design. We extend this model to the class of mixed unit interval graphs and demonstrate the advantages of this generalized model by providing a subexponential-time algorithm for solving the MaxCut problem on mixed unit interval graphs. In addition, we derive a polynomial-time algorithm for certain subclasses of mixed unit interval graphs. We point out a substantial mistake in the proof of the polynomiality of the MaxCut problem on unit interval graphs by Boyaci, Ekim, and Shalom (2017). Hence, the time complexity of this problem on unit interval graphs remains open. We further provide a better algorithmic upper-bound on the clique-width of mixed unit interval graphs.

Cite as

Jan Kratochvíl, Tomáš Masařík, and Jana Novotná. U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 57:1-57:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kratochvil_et_al:LIPIcs.MFCS.2020.57,
  author =	{Kratochv{\'\i}l, Jan and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana},
  title =	{{U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{57:1--57:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.57},
  URN =		{urn:nbn:de:0030-drops-127247},
  doi =		{10.4230/LIPIcs.MFCS.2020.57},
  annote =	{Keywords: Interval Graphs, Mixed Unit Interval Graphs, MaxCut Problem, Clique Width, Subexponential Algorithm, Bubble Model}
}
Document
Packing Directed Circuits Quarter-Integrally

Authors: Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
The celebrated Erdős-Pósa theorem states that every undirected graph that does not admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(k log k). After being known for long as Younger’s conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph G there is no family of k cycles such that every vertex of G is in at most four of the cycles, then there exists a feedback vertex set in G of size O(k^4). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers a and b, if a directed graph G has directed treewidth Omega(a^6 b^8 log^2(ab)), then one can find in G a family of a subgraphs, each of directed treewidth at least b, such that every vertex of G is in at most four subgraphs.

Cite as

Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge. Packing Directed Circuits Quarter-Integrally. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 72:1-72:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{masarik_et_al:LIPIcs.ESA.2019.72,
  author =	{Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Muzi, Irene and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Sorge, Manuel},
  title =	{{Packing Directed Circuits Quarter-Integrally}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{72:1--72:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.72},
  URN =		{urn:nbn:de:0030-drops-111938},
  doi =		{10.4230/LIPIcs.ESA.2019.72},
  annote =	{Keywords: Directed graphs, graph algorithms, linkage, Erd\H{o}s–P\'{o}sa property}
}
Document
Parameterized Complexity of Fair Vertex Evaluation Problems

Authors: Dušan Knop, Tomáš Masařík, and Tomáš Toufar

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
A prototypical graph problem is centered around a graph-theoretic property for a set of vertices and a solution to it is a set of vertices for which the desired property holds. The task is to decide whether, in the given graph, there exists a solution of a certain quality, where we use size as a quality measure. In this work, we are changing the measure to the fair measure (cf. Lin and Sahni [Li-Shin Lin and Sartaj Sahni, 1989]). The fair measure of a set of vertices S is (at most) k if the number of neighbors in the set S of any vertex (in the input graph) does not exceed k. One possible way to study graph problems is by defining the property in a certain logic. For a given objective, an evaluation problem is to find a set (of vertices) that simultaneously minimizes the assumed measure and satisfies an appropriate formula. More formally, we study the {MSO} Fair Vertex Evaluation, where the graph-theoretic property is described by an {MSO} formula. In the presented paper we show that there is an FPT algorithm for the {MSO} Fair Vertex Evaluation problem for formulas with one free variable parameterized by the twin cover number of the input graph and the size of the formula. One may define an extended variant of {MSO} Fair Vertex Evaluation for formulas with l free variables; here we measure a maximum number of neighbors in each of the l sets. However, such variant is {W[1]}-hard for parameter l even on graphs with twin cover one. Furthermore, we study the Fair Vertex Cover (Fair VC) problem. Fair VC is among the simplest problems with respect to the demanded property (i.e., the rest forms an edgeless graph). On the negative side, Fair VC is {W[1]}-hard when parameterized by both treedepth and feedback vertex set of the input graph. On the positive side, we provide an FPT algorithm for the parameter modular width.

Cite as

Dušan Knop, Tomáš Masařík, and Tomáš Toufar. Parameterized Complexity of Fair Vertex Evaluation Problems. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{knop_et_al:LIPIcs.MFCS.2019.33,
  author =	{Knop, Du\v{s}an and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Toufar, Tom\'{a}\v{s}},
  title =	{{Parameterized Complexity of Fair Vertex Evaluation Problems}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.33},
  URN =		{urn:nbn:de:0030-drops-109775},
  doi =		{10.4230/LIPIcs.MFCS.2019.33},
  annote =	{Keywords: Fair objective, metatheorem, fair vertex cover, twin cover, modular width}
}
Document
Colouring (P_r+P_s)-Free Graphs

Authors: Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika Slívová

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
The k-Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for a fixed integer k such that no two adjacent vertices are coloured alike. If each vertex u must be assigned a colour from a prescribed list L(u) subseteq {1,...,k}, then we obtain the List k-Colouring problem. A graph G is H-free if G does not contain H as an induced subgraph. We continue an extensive study into the complexity of these two problems for H-free graphs. We prove that List 3-Colouring is polynomial-time solvable for (P_2+P_5)-free graphs and for (P_3+P_4)-free graphs. Combining our results with known results yields complete complexity classifications of 3-Colouring and List 3-Colouring on H-free graphs for all graphs H up to seven vertices. We also prove that 5-Colouring is NP-complete for (P_3+P_5)-free graphs.

Cite as

Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika Slívová. Colouring (P_r+P_s)-Free Graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{klimosova_et_al:LIPIcs.ISAAC.2018.5,
  author =	{Klimosov\'{a}, Tereza and Mal{\'\i}k, Josef and Masar{\'\i}k, Tom\'{a}s and Novotn\'{a}, Jana and Paulusma, Dani\"{e}l and Sl{\'\i}vov\'{a}, Veronika},
  title =	{{Colouring (P\underliner+P\underlines)-Free Graphs}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.5},
  URN =		{urn:nbn:de:0030-drops-99533},
  doi =		{10.4230/LIPIcs.ISAAC.2018.5},
  annote =	{Keywords: vertex colouring, H-free graph, linear forest}
}
Document
Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

Authors: Pavel Dvorák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masarík, Tomáš Toufar, and Pavel Veselý

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.

Cite as

Pavel Dvorák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masarík, Tomáš Toufar, and Pavel Veselý. Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.STACS.2018.26,
  author =	{Dvor\'{a}k, Pavel and Feldmann, Andreas Emil and Knop, Du\v{s}an and Masar{\'\i}k, Tom\'{a}\v{s} and Toufar, Tom\'{a}\v{s} and Vesel\'{y}, Pavel},
  title =	{{Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.26},
  URN =		{urn:nbn:de:0030-drops-85158},
  doi =		{10.4230/LIPIcs.STACS.2018.26},
  annote =	{Keywords: Steiner Tree, Steiner Forest, Approximation Algorithms, Parameterized Algorithms, Lossy Kernelization}
}

Masařík, Tomáš

Document
On the Uncrossed Number of Graphs

Authors: Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Visualizing a graph G in the plane nicely, for example, without crossings, is unfortunately not always possible. To address this problem, Masařík and Hliněný [GD 2023] recently asked for each edge of G to be drawn without crossings while allowing multiple different drawings of G. More formally, a collection 𝒟 of drawings of G is uncrossed if, for each edge e of G, there is a drawing in 𝒟 such that e is uncrossed. The uncrossed number unc(G) of G is then the minimum number of drawings in some uncrossed collection of G. No exact values of the uncrossed numbers have been determined yet, not even for simple graph classes. In this paper, we provide the exact values for uncrossed numbers of complete and complete bipartite graphs, partly confirming and partly refuting a conjecture posed by Hliněný and Masařík [GD 2023]. We also present a strong general lower bound on unc(G) in terms of the number of vertices and edges of G. Moreover, we prove NP-hardness of the related problem of determining the edge crossing number of a graph G, which is the smallest number of edges of G taken over all drawings of G that participate in a crossing. This problem was posed as open by Schaefer in his book [Crossing Numbers of Graphs 2018].

Cite as

Martin Balko, Petr Hliněný, Tomáš Masařík, Joachim Orthaber, Birgit Vogtenhuber, and Mirko H. Wagner. On the Uncrossed Number of Graphs. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 18:1-18:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{balko_et_al:LIPIcs.GD.2024.18,
  author =	{Balko, Martin and Hlin\v{e}n\'{y}, Petr and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Orthaber, Joachim and Vogtenhuber, Birgit and Wagner, Mirko H.},
  title =	{{On the Uncrossed Number of Graphs}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{18:1--18:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.18},
  URN =		{urn:nbn:de:0030-drops-213028},
  doi =		{10.4230/LIPIcs.GD.2024.18},
  annote =	{Keywords: Uncrossed Number, Crossing Number, Planarity, Thickness}
}
Document
List Locally Surjective Homomorphisms in Hereditary Graph Classes

Authors: Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V(H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H,F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family 𝒮 consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H ∈ {P₃,C₄} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F ∈ 𝒮 (unless the ETH fails).

Cite as

Pavel Dvořák, Tomáš Masařík, Jana Novotná, Monika Krawczyk, Paweł Rzążewski, and Aneta Żuk. List Locally Surjective Homomorphisms in Hereditary Graph Classes. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 30:1-30:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.ISAAC.2022.30,
  author =	{Dvo\v{r}\'{a}k, Pavel and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Krawczyk, Monika and Rz\k{a}\.{z}ewski, Pawe{\l} and \.{Z}uk, Aneta},
  title =	{{List Locally Surjective Homomorphisms in Hereditary Graph Classes}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{30:1--30:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.30},
  URN =		{urn:nbn:de:0030-drops-173154},
  doi =		{10.4230/LIPIcs.ISAAC.2022.30},
  annote =	{Keywords: Homomorphism, Hereditary graphs, Subexponential-time algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gyárfás' Path Argument

Authors: Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We revisit recent developments for the Maximum Weight Independent Set problem in graphs excluding a subdivided claw S_{t,t,t} as an induced subgraph [Chudnovsky, Pilipczuk, Pilipczuk, Thomassé, SODA 2020] and provide a subexponential-time algorithm with improved running time 2^𝒪(√nlog n) and a quasipolynomial-time approximation scheme with improved running time 2^𝒪(ε^{-1} log⁵ n). The Gyárfás' path argument, a powerful tool that is the main building block for many algorithms in P_t-free graphs, ensures that given an n-vertex P_t-free graph, in polynomial time we can find a set P of at most t-1 vertices, such that every connected component of G-N[P] has at most n/2 vertices. Our main technical contribution is an analog of this result for S_{t,t,t}-free graphs: given an n-vertex S_{t,t,t}-free graph, in polynomial time we can find a set P of 𝒪(t log n) vertices and an extended strip decomposition (an appropriate analog of the decomposition into connected components) of G-N[P] such that every particle (an appropriate analog of a connected component to recurse on) of the said extended strip decomposition has at most n/2 vertices.

Cite as

Konrad Majewski, Tomáš Masařík, Jana Novotná, Karolina Okrasa, Marcin Pilipczuk, Paweł Rzążewski, and Marek Sokołowski. Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gyárfás' Path Argument. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 93:1-93:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{majewski_et_al:LIPIcs.ICALP.2022.93,
  author =	{Majewski, Konrad and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana and Okrasa, Karolina and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Soko{\l}owski, Marek},
  title =	{{Max Weight Independent Set in Graphs with No Long Claws: An Analog of the Gy\'{a}rf\'{a}s' Path Argument}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{93:1--93:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.93},
  URN =		{urn:nbn:de:0030-drops-164343},
  doi =		{10.4230/LIPIcs.ICALP.2022.93},
  annote =	{Keywords: Max Independent Set, subdivided claw, QPTAS, subexponential-time algorithm}
}
Document
U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited

Authors: Jan Kratochvíl, Tomáš Masařík, and Jana Novotná

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
Interval graphs, intersection graphs of segments on a real line (intervals), play a key role in the study of algorithms and special structural properties. Unit interval graphs, their proper subclass, where each interval has a unit length, has also been extensively studied. We study mixed unit interval graphs - a generalization of unit interval graphs where each interval has still a unit length, but intervals of more than one type (open, closed, semi-closed) are allowed. This small modification captures a much richer class of graphs. In particular, mixed unit interval graphs are not claw-free, compared to unit interval graphs. Heggernes, Meister, and Papadopoulos defined a representation of unit interval graphs called the bubble model which turned out to be useful in algorithm design. We extend this model to the class of mixed unit interval graphs and demonstrate the advantages of this generalized model by providing a subexponential-time algorithm for solving the MaxCut problem on mixed unit interval graphs. In addition, we derive a polynomial-time algorithm for certain subclasses of mixed unit interval graphs. We point out a substantial mistake in the proof of the polynomiality of the MaxCut problem on unit interval graphs by Boyaci, Ekim, and Shalom (2017). Hence, the time complexity of this problem on unit interval graphs remains open. We further provide a better algorithmic upper-bound on the clique-width of mixed unit interval graphs.

Cite as

Jan Kratochvíl, Tomáš Masařík, and Jana Novotná. U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 57:1-57:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kratochvil_et_al:LIPIcs.MFCS.2020.57,
  author =	{Kratochv{\'\i}l, Jan and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Novotn\'{a}, Jana},
  title =	{{U-Bubble Model for Mixed Unit Interval Graphs and Its Applications: The MaxCut Problem Revisited}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{57:1--57:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.57},
  URN =		{urn:nbn:de:0030-drops-127247},
  doi =		{10.4230/LIPIcs.MFCS.2020.57},
  annote =	{Keywords: Interval Graphs, Mixed Unit Interval Graphs, MaxCut Problem, Clique Width, Subexponential Algorithm, Bubble Model}
}
Document
Packing Directed Circuits Quarter-Integrally

Authors: Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
The celebrated Erdős-Pósa theorem states that every undirected graph that does not admit a family of k vertex-disjoint cycles contains a feedback vertex set (a set of vertices hitting all cycles in the graph) of size O(k log k). After being known for long as Younger’s conjecture, a similar statement for directed graphs has been proven in 1996 by Reed, Robertson, Seymour, and Thomas. However, in their proof, the dependency of the size of the feedback vertex set on the size of vertex-disjoint cycle packing is not elementary. We show that if we compare the size of a minimum feedback vertex set in a directed graph with quarter-integral cycle packing number, we obtain a polynomial bound. More precisely, we show that if in a directed graph G there is no family of k cycles such that every vertex of G is in at most four of the cycles, then there exists a feedback vertex set in G of size O(k^4). On the way there we prove a more general result about quarter-integral packing of subgraphs of high directed treewidth: for every pair of positive integers a and b, if a directed graph G has directed treewidth Omega(a^6 b^8 log^2(ab)), then one can find in G a family of a subgraphs, each of directed treewidth at least b, such that every vertex of G is in at most four subgraphs.

Cite as

Tomáš Masařík, Irene Muzi, Marcin Pilipczuk, Paweł Rzążewski, and Manuel Sorge. Packing Directed Circuits Quarter-Integrally. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 72:1-72:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{masarik_et_al:LIPIcs.ESA.2019.72,
  author =	{Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Muzi, Irene and Pilipczuk, Marcin and Rz\k{a}\.{z}ewski, Pawe{\l} and Sorge, Manuel},
  title =	{{Packing Directed Circuits Quarter-Integrally}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{72:1--72:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.72},
  URN =		{urn:nbn:de:0030-drops-111938},
  doi =		{10.4230/LIPIcs.ESA.2019.72},
  annote =	{Keywords: Directed graphs, graph algorithms, linkage, Erd\H{o}s–P\'{o}sa property}
}
Document
Parameterized Complexity of Fair Vertex Evaluation Problems

Authors: Dušan Knop, Tomáš Masařík, and Tomáš Toufar

Published in: LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)


Abstract
A prototypical graph problem is centered around a graph-theoretic property for a set of vertices and a solution to it is a set of vertices for which the desired property holds. The task is to decide whether, in the given graph, there exists a solution of a certain quality, where we use size as a quality measure. In this work, we are changing the measure to the fair measure (cf. Lin and Sahni [Li-Shin Lin and Sartaj Sahni, 1989]). The fair measure of a set of vertices S is (at most) k if the number of neighbors in the set S of any vertex (in the input graph) does not exceed k. One possible way to study graph problems is by defining the property in a certain logic. For a given objective, an evaluation problem is to find a set (of vertices) that simultaneously minimizes the assumed measure and satisfies an appropriate formula. More formally, we study the {MSO} Fair Vertex Evaluation, where the graph-theoretic property is described by an {MSO} formula. In the presented paper we show that there is an FPT algorithm for the {MSO} Fair Vertex Evaluation problem for formulas with one free variable parameterized by the twin cover number of the input graph and the size of the formula. One may define an extended variant of {MSO} Fair Vertex Evaluation for formulas with l free variables; here we measure a maximum number of neighbors in each of the l sets. However, such variant is {W[1]}-hard for parameter l even on graphs with twin cover one. Furthermore, we study the Fair Vertex Cover (Fair VC) problem. Fair VC is among the simplest problems with respect to the demanded property (i.e., the rest forms an edgeless graph). On the negative side, Fair VC is {W[1]}-hard when parameterized by both treedepth and feedback vertex set of the input graph. On the positive side, we provide an FPT algorithm for the parameter modular width.

Cite as

Dušan Knop, Tomáš Masařík, and Tomáš Toufar. Parameterized Complexity of Fair Vertex Evaluation Problems. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 33:1-33:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{knop_et_al:LIPIcs.MFCS.2019.33,
  author =	{Knop, Du\v{s}an and Masa\v{r}{\'\i}k, Tom\'{a}\v{s} and Toufar, Tom\'{a}\v{s}},
  title =	{{Parameterized Complexity of Fair Vertex Evaluation Problems}},
  booktitle =	{44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)},
  pages =	{33:1--33:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-117-7},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{138},
  editor =	{Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.33},
  URN =		{urn:nbn:de:0030-drops-109775},
  doi =		{10.4230/LIPIcs.MFCS.2019.33},
  annote =	{Keywords: Fair objective, metatheorem, fair vertex cover, twin cover, modular width}
}
Document
Colouring (P_r+P_s)-Free Graphs

Authors: Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika Slívová

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
The k-Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for a fixed integer k such that no two adjacent vertices are coloured alike. If each vertex u must be assigned a colour from a prescribed list L(u) subseteq {1,...,k}, then we obtain the List k-Colouring problem. A graph G is H-free if G does not contain H as an induced subgraph. We continue an extensive study into the complexity of these two problems for H-free graphs. We prove that List 3-Colouring is polynomial-time solvable for (P_2+P_5)-free graphs and for (P_3+P_4)-free graphs. Combining our results with known results yields complete complexity classifications of 3-Colouring and List 3-Colouring on H-free graphs for all graphs H up to seven vertices. We also prove that 5-Colouring is NP-complete for (P_3+P_5)-free graphs.

Cite as

Tereza Klimosová, Josef Malík, Tomás Masarík, Jana Novotná, Daniël Paulusma, and Veronika Slívová. Colouring (P_r+P_s)-Free Graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 5:1-5:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{klimosova_et_al:LIPIcs.ISAAC.2018.5,
  author =	{Klimosov\'{a}, Tereza and Mal{\'\i}k, Josef and Masar{\'\i}k, Tom\'{a}s and Novotn\'{a}, Jana and Paulusma, Dani\"{e}l and Sl{\'\i}vov\'{a}, Veronika},
  title =	{{Colouring (P\underliner+P\underlines)-Free Graphs}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{5:1--5:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.5},
  URN =		{urn:nbn:de:0030-drops-99533},
  doi =		{10.4230/LIPIcs.ISAAC.2018.5},
  annote =	{Keywords: vertex colouring, H-free graph, linear forest}
}
Document
Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

Authors: Pavel Dvorák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masarík, Tomáš Toufar, and Pavel Veselý

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (Steiner vertices) in the optimum solution. In contrast to this we give an efficient parameterized approximation scheme (EPAS), which circumvents both hardness results. Moreover, our methods imply the existence of a polynomial size approximate kernelization scheme (PSAKS) for the considered parameter. We further study the parameterized approximability of other variants of Steiner Tree, such as Directed Steiner Tree and Steiner Forest. For neither of these an EPAS is likely to exist for the studied parameter: for Steiner Forest an easy observation shows that the problem is APX-hard, even if the input graph contains no Steiner vertices. For Directed Steiner Tree we prove that computing a constant approximation for this parameter is W[1]-hard. Nevertheless, we show that an EPAS exists for Unweighted Directed Steiner Tree. Also we prove that there is an EPAS and a PSAKS for Steiner Forest if in addition to the number of Steiner vertices, the number of connected components of an optimal solution is considered to be a parameter.

Cite as

Pavel Dvorák, Andreas Emil Feldmann, Dušan Knop, Tomáš Masarík, Tomáš Toufar, and Pavel Veselý. Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 26:1-26:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{dvorak_et_al:LIPIcs.STACS.2018.26,
  author =	{Dvor\'{a}k, Pavel and Feldmann, Andreas Emil and Knop, Du\v{s}an and Masar{\'\i}k, Tom\'{a}\v{s} and Toufar, Tom\'{a}\v{s} and Vesel\'{y}, Pavel},
  title =	{{Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{26:1--26:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.26},
  URN =		{urn:nbn:de:0030-drops-85158},
  doi =		{10.4230/LIPIcs.STACS.2018.26},
  annote =	{Keywords: Steiner Tree, Steiner Forest, Approximation Algorithms, Parameterized Algorithms, Lossy Kernelization}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail