Search Results

Documents authored by Mazor, Noam


Document
RANDOM
On Black-Box Meta Complexity and Function Inversion

Authors: Noam Mazor and Rafael Pass

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The relationships between various meta-complexity problems are not well understood in the worst-case regime, including whether the search version is harder than the decision version, whether the hardness scales with the "threshold", and how the hardness of different meta-complexity problems relate to one another, and to the task of function inversion. In this work, we present resolutions to some of these questions with respect to the black-box analog of these problems. In more detail, let MK^t_M P[s] denote the language consisting of strings x with K_{M}^t(x) < s(|x|), where K_M^t(x) denotes the t-bounded Kolmogorov complexity of x with M as the underlying (Universal) Turing machine, and let search-MK^t_M P[s] denote the search version of the same problem. We show that if for every Universal Turing machine U there exists a 2^{α n}poly(n)-size U-oracle aided circuit deciding MK^t_U P[n-O(1)], then for every function s, and every not necessarily universal Turing machine M, there exists a 2^{α s(n)}poly(n)-size M-oracle aided circuit solving search-MK^t_M P[s(n)]; this in turn yields circuits of roughly the same size for both the Minimum Circuit Size Problem (MCSP), and the function inversion problem, as they can be thought of as instantiating MK^t_M P with particular choices of (a non-universal) TMs M (the circuit emulator for the case of MCSP, and the function evaluation in the case of function inversion). As a corollary of independent interest, we get that the complexity of black-box function inversion is (roughly) the same as the complexity of black-box deciding MK^t_U P[n-O(1)] for any universal TM U; that is, also in the worst-case regime, black-box function inversion is "equivalent" to black-box deciding MK^t_U P.

Cite as

Noam Mazor and Rafael Pass. On Black-Box Meta Complexity and Function Inversion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 66:1-66:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mazor_et_al:LIPIcs.APPROX/RANDOM.2024.66,
  author =	{Mazor, Noam and Pass, Rafael},
  title =	{{On Black-Box Meta Complexity and Function Inversion}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{66:1--66:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.66},
  URN =		{urn:nbn:de:0030-drops-210597},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.66},
  annote =	{Keywords: Meta Complexity, Kolmogorov complexity, function inversion}
}
Document
Search-To-Decision Reductions for Kolmogorov Complexity

Authors: Noam Mazor and Rafael Pass

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
A long-standing open problem dating back to the 1960s is whether there exists a search-to-decision reduction for the time-bounded Kolmogorov complexity problem - that is, the problem of determining whether the length of the shortest time-t program generating a given string x is at most s. In this work, we consider the more "robust" version of the time-bounded Kolmogorov complexity problem, referred to as the GapMINKT problem, where given a size bound s and a running time bound t, the goal is to determine whether there exists a poly(t,|x|)-time program of length s+O(log |x|) that generates x. We present the first non-trivial search-to-decision reduction R for the GapMINKT problem; R has a running-time bound of 2^{ε n} for any ε > 0 and additionally only queries its oracle on "thresholds" s of size s+O(log |x|). As such, we get that any algorithm with running-time (resp. circuit size) 2^{α s} poly(|x|,t,s) for solving GapMINKT (given an instance (x,t,s), yields an algorithm for finding a witness with running-time (resp. circuit size) 2^{(α+ε) s} poly(|x|,t,s). Our second result is a polynomial-time search-to-decision reduction for the time-bounded Kolmogorov complexity problem in the average-case regime. Such a reduction was recently shown by Liu and Pass (FOCS'20), heavily relying on cryptographic techniques. Our reduction is more direct and additionally has the advantage of being length-preserving, and as such also applies in the exponential time/size regime. A central component in both of these results is the use of Kolmogorov and Levin’s Symmetry of Information Theorem.

Cite as

Noam Mazor and Rafael Pass. Search-To-Decision Reductions for Kolmogorov Complexity. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 34:1-34:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mazor_et_al:LIPIcs.CCC.2024.34,
  author =	{Mazor, Noam and Pass, Rafael},
  title =	{{Search-To-Decision Reductions for Kolmogorov Complexity}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{34:1--34:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.34},
  URN =		{urn:nbn:de:0030-drops-204308},
  doi =		{10.4230/LIPIcs.CCC.2024.34},
  annote =	{Keywords: Kolmogorov complexity, search to decision}
}
Document
Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

Authors: Noam Mazor and Rafael Pass

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We demonstrate that under believable cryptographic hardness assumptions, Gap versions of standard meta-complexity problems, such as the Minimum Circuit Size Problem (MCSP) and the Minimum Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete w.r.t. Levin (i.e., witness-preserving many-to-one) reductions. In more detail: - Assuming the existence of indistinguishability obfuscation, and subexponentially-secure one-way functions, an appropriate Gap version of MCSP is not NP-complete under randomized Levin-reductions. - Assuming the existence of subexponentially-secure indistinguishability obfuscation, subexponentially-secure one-way functions and injective PRGs, an appropriate Gap version of MKTP is not NP-complete under randomized Levin-reductions.

Cite as

Noam Mazor and Rafael Pass. Gap MCSP Is Not (Levin) NP-Complete in Obfustopia. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 36:1-36:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mazor_et_al:LIPIcs.CCC.2024.36,
  author =	{Mazor, Noam and Pass, Rafael},
  title =	{{Gap MCSP Is Not (Levin) NP-Complete in Obfustopia}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{36:1--36:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.36},
  URN =		{urn:nbn:de:0030-drops-204322},
  doi =		{10.4230/LIPIcs.CCC.2024.36},
  annote =	{Keywords: Kolmogorov complexity, MCSP, Levin Reduction}
}
Document
The Non-Uniform Perebor Conjecture for Time-Bounded Kolmogorov Complexity Is False

Authors: Noam Mazor and Rafael Pass

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
The Perebor (Russian for "brute-force search") conjectures, which date back to the 1950s and 1960s are some of the oldest conjectures in complexity theory. The conjectures are a stronger form of the NP ≠ P conjecture (which they predate) and state that for "meta-complexity" problems, such as the Time-bounded Kolmogorov complexity Problem, and the Minimum Circuit Size Problem, there are no better algorithms than brute force search. In this paper, we disprove the non-uniform version of the Perebor conjecture for the Time-Bounded Kolmogorov complexity problem. We demonstrate that for every polynomial t(⋅), there exists of a circuit of size 2^{4n/5+o(n)} that solves the t(⋅)-bounded Kolmogorov complexity problem on every instance. Our algorithm is black-box in the description of the Universal Turing Machine U employed in the definition of Kolmogorov Complexity and leverages the characterization of one-way functions through the hardness of the time-bounded Kolmogorov complexity problem of Liu and Pass (FOCS'20), and the time-space trade-off for one-way functions of Fiat and Naor (STOC'91). We additionally demonstrate that no such black-box algorithm can have circuit size smaller than 2^{n/2-o(n)}. Along the way (and of independent interest), we extend the result of Fiat and Naor and demonstrate that any efficiently computable function can be inverted (with probability 1) by a circuit of size 2^{4n/5+o(n)}; as far as we know, this yields the first formal proof that a non-trivial circuit can invert any efficient function.

Cite as

Noam Mazor and Rafael Pass. The Non-Uniform Perebor Conjecture for Time-Bounded Kolmogorov Complexity Is False. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 80:1-80:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mazor_et_al:LIPIcs.ITCS.2024.80,
  author =	{Mazor, Noam and Pass, Rafael},
  title =	{{The Non-Uniform Perebor Conjecture for Time-Bounded Kolmogorov Complexity Is False}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{80:1--80:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.80},
  URN =		{urn:nbn:de:0030-drops-196088},
  doi =		{10.4230/LIPIcs.ITCS.2024.80},
  annote =	{Keywords: Kolmogorov complexity, perebor conjecture, function inversion}
}
Document
A Lower Bound on the Share Size in Evolving Secret Sharing

Authors: Noam Mazor

Published in: LIPIcs, Volume 267, 4th Conference on Information-Theoretic Cryptography (ITC 2023)


Abstract
Secret sharing schemes allow sharing a secret between a set of parties in a way that ensures that only authorized subsets of the parties learn the secret. Evolving secret sharing schemes (Komargodski, Naor, and Yogev [TCC '16]) allow achieving this end in a scenario where the parties arrive in an online fashion, and there is no a-priory bound on the number of parties. An important complexity measure of a secret sharing scheme is the share size, which is the maximum number of bits that a party may receive as a share. While there has been a significant progress in recent years, the best constructions for both secret sharing and evolving secret sharing schemes have a share size that is exponential in the number of parties. On the other hand, the best lower bound, by Csirmaz [Eurocrypt '95], is sub-linear. In this work, we give a tight lower bound on the share size of evolving secret sharing schemes. Specifically, we show that the sub-linear lower bound of Csirmaz implies an exponential lower bound on evolving secret sharing.

Cite as

Noam Mazor. A Lower Bound on the Share Size in Evolving Secret Sharing. In 4th Conference on Information-Theoretic Cryptography (ITC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 267, pp. 2:1-2:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{mazor:LIPIcs.ITC.2023.2,
  author =	{Mazor, Noam},
  title =	{{A Lower Bound on the Share Size in Evolving Secret Sharing}},
  booktitle =	{4th Conference on Information-Theoretic Cryptography (ITC 2023)},
  pages =	{2:1--2:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-271-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{267},
  editor =	{Chung, Kai-Min},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITC.2023.2},
  URN =		{urn:nbn:de:0030-drops-183300},
  doi =		{10.4230/LIPIcs.ITC.2023.2},
  annote =	{Keywords: Secret sharing, Evolving secret sharing}
}
Document
Incompressiblity and Next-Block Pseudoentropy

Authors: Iftach Haitner, Noam Mazor, and Jad Silbak

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
A distribution is k-incompressible, Yao [FOCS '82], if no efficient compression scheme compresses it to less than k bits. While being a natural measure, its relation to other computational analogs of entropy such as pseudoentropy, Hastad, Impagliazzo, Levin, and Luby [SICOMP '99], and to other cryptographic hardness assumptions, was unclear. We advance towards a better understating of this notion, showing that a k-incompressible distribution has (k-2) bits of next-block pseudoentropy, a refinement of pseudoentropy introduced by Haitner, Reingold, and Vadhan [SICOMP '13]. We deduce that a samplable distribution X that is (H(X)+2)-incompressible, implies the existence of one-way functions.

Cite as

Iftach Haitner, Noam Mazor, and Jad Silbak. Incompressiblity and Next-Block Pseudoentropy. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 66:1-66:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{haitner_et_al:LIPIcs.ITCS.2023.66,
  author =	{Haitner, Iftach and Mazor, Noam and Silbak, Jad},
  title =	{{Incompressiblity and Next-Block Pseudoentropy}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{66:1--66:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.66},
  URN =		{urn:nbn:de:0030-drops-175697},
  doi =		{10.4230/LIPIcs.ITCS.2023.66},
  annote =	{Keywords: incompressibility, next-block pseudoentropy, sparse languages}
}
Document
On the Communication Complexity of Key-Agreement Protocols

Authors: Iftach Haitner, Noam Mazor, Rotem Oshman, Omer Reingold, and Amir Yehudayoff

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
Key-agreement protocols whose security is proven in the random oracle model are an important alternative to protocols based on public-key cryptography. In the random oracle model, the parties and the eavesdropper have access to a shared random function (an "oracle"), but the parties are limited in the number of queries they can make to the oracle. The random oracle serves as an abstraction for black-box access to a symmetric cryptographic primitive, such as a collision resistant hash. Unfortunately, as shown by Impagliazzo and Rudich [STOC '89] and Barak and Mahmoody [Crypto '09], such protocols can only guarantee limited secrecy: the key of any l-query protocol can be revealed by an O(l^2)-query adversary. This quadratic gap between the query complexity of the honest parties and the eavesdropper matches the gap obtained by the Merkle's Puzzles protocol of Merkle [CACM '78]. In this work we tackle a new aspect of key-agreement protocols in the random oracle model: their communication complexity. In Merkle's Puzzles, to obtain secrecy against an eavesdropper that makes roughly l^2 queries, the honest parties need to exchange Omega(l) bits. We show that for protocols with certain natural properties, ones that Merkle's Puzzle has, such high communication is unavoidable. Specifically, this is the case if the honest parties' queries are uniformly random, or alternatively if the protocol uses non-adaptive queries and has only two rounds. Our proof for the first setting uses a novel reduction from the set-disjointness problem in two-party communication complexity. For the second setting we prove the lower bound directly, using information-theoretic arguments. Understanding the communication complexity of protocols whose security is proven (in the random-oracle model) is an important question in the study of practical protocols. Our results and proof techniques are a first step in this direction.

Cite as

Iftach Haitner, Noam Mazor, Rotem Oshman, Omer Reingold, and Amir Yehudayoff. On the Communication Complexity of Key-Agreement Protocols. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 40:1-40:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{haitner_et_al:LIPIcs.ITCS.2019.40,
  author =	{Haitner, Iftach and Mazor, Noam and Oshman, Rotem and Reingold, Omer and Yehudayoff, Amir},
  title =	{{On the Communication Complexity of Key-Agreement Protocols}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{40:1--40:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.40},
  URN =		{urn:nbn:de:0030-drops-101335},
  doi =		{10.4230/LIPIcs.ITCS.2019.40},
  annote =	{Keywords: key agreement, random oracle, communication complexity, Merkle's puzzles}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail