Search Results

Documents authored by Morelle, Laure


Document
Graph Modification of Bounded Size to Minor-Closed Classes as Fast as Vertex Deletion

Authors: Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
A replacement action is a function ℒ that maps each graph H to a collection of graphs of size at most |V(H)|. Given a graph class ℋ, we consider a general family of graph modification problems, called ℒ-Replacement to ℋ, where the input is a graph G and the question is whether it is possible to replace some induced subgraph H₁ of G on at most k vertices by a graph H₂ in ℒ(H₁) so that the resulting graph belongs to ℋ. ℒ-Replacement to ℋ can simulate many graph modification problems including vertex deletion, edge deletion/addition/edition/contraction, vertex identification, subgraph complementation, independent set deletion, (induced) matching deletion/contraction, etc. We present two algorithms. The first one solves ℒ-Replacement to ℋ in time 2^poly(k) ⋅ |V(G)|² for every minor-closed graph class ℋ, where poly is a polynomial whose degree depends on ℋ, under a mild technical condition on ℒ. This generalizes the results of Morelle, Sau, Stamoulis, and Thilikos [ICALP 2020, ICALP 2023] for the particular case of Vertex Deletion to ℋ within the same running time. Our second algorithm is an improvement of the first one when ℋ is the class of graphs embeddable in a surface of Euler genus at most g and runs in time 2^𝒪(k⁹) ⋅ |V(G)|², where the 𝒪(⋅) notation depends on g. To the best of our knowledge, these are the first parameterized algorithms with a reasonable parametric dependence for such a general family of graph modification problems to minor-closed classes.

Cite as

Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos. Graph Modification of Bounded Size to Minor-Closed Classes as Fast as Vertex Deletion. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{morelle_et_al:LIPIcs.ESA.2025.7,
  author =	{Morelle, Laure and Sau, Ignasi and Thilikos, Dimitrios M.},
  title =	{{Graph Modification of Bounded Size to Minor-Closed Classes as Fast as Vertex Deletion}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.7},
  URN =		{urn:nbn:de:0030-drops-244751},
  doi =		{10.4230/LIPIcs.ESA.2025.7},
  annote =	{Keywords: Graph modification problems, Parameterized complexity, Graph minors, Flat Wall theorem, Irrelevant vertex technique, Algorithmic meta-theorem, Parametric dependence, Dynamic programming}
}
Document
Fault-Tolerant Matroid Bases

Authors: Matthias Bentert, Fedor V. Fomin, Petr A. Golovach, and Laure Morelle

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We investigate the problem of constructing fault-tolerant bases in matroids. Given a matroid ℳ and a redundancy parameter k, a k-fault-tolerant basis is a minimum-size set of elements such that, even after the removal of any k elements, the remaining subset still spans the entire ground set. Since matroids generalize linear independence across structures such as vector spaces, graphs, and set systems, this problem unifies and extends several fault-tolerant concepts appearing in prior research. Our main contribution is a fixed-parameter tractable (FPT) algorithm for the k-fault-tolerant basis problem, parameterized by both k and the rank r of the matroid. This two-variable parameterization by k + r is shown to be tight in the following sense. On the one hand, the problem is already NP-hard for k = 1. On the other hand, it is Para-NP-hard for r ≥ 3 and polynomial-time solvable for r ≤ 2.

Cite as

Matthias Bentert, Fedor V. Fomin, Petr A. Golovach, and Laure Morelle. Fault-Tolerant Matroid Bases. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 83:1-83:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bentert_et_al:LIPIcs.ESA.2025.83,
  author =	{Bentert, Matthias and Fomin, Fedor V. and Golovach, Petr A. and Morelle, Laure},
  title =	{{Fault-Tolerant Matroid Bases}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{83:1--83:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.83},
  URN =		{urn:nbn:de:0030-drops-245511},
  doi =		{10.4230/LIPIcs.ESA.2025.83},
  annote =	{Keywords: Parameterized Complexity, matroids, robust bases}
}
Document
Dynamic Programming on Bipartite Tree Decompositions

Authors: Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We revisit a graph width parameter that we dub bipartite treewidth, along with its associated graph decomposition that we call bipartite tree decomposition. Bipartite treewidth can be seen as a common generalization of treewidth and the odd cycle transversal number. Intuitively, a bipartite tree decomposition is a tree decomposition whose bags induce almost bipartite graphs and whose adhesions contain at most one vertex from the bipartite part of any other bag, while the width of such decomposition measures how far the bags are from being bipartite. Adapted from a tree decomposition originally defined by Demaine, Hajiaghayi, and Kawarabayashi [SODA 2010] and explicitly defined by Tazari [Theor. Comput. Sci. 2012], bipartite treewidth appears to play a crucial role for solving problems related to odd-minors, which have recently attracted considerable attention. As a first step toward a theory for solving these problems efficiently, the main goal of this paper is to develop dynamic programming techniques to solve problems on graphs of small bipartite treewidth. For such graphs, we provide a number of para-NP-completeness results, FPT-algorithms, and XP-algorithms, as well as several open problems. In particular, we show that K_t-Subgraph-Cover, Weighted Vertex Cover/Independent Set, Odd Cycle Transversal, and Maximum Weighted Cut are FPT parameterized by bipartite treewidth. We also provide the following complexity dichotomy when H is a 2-connected graph, for each of the H-Subgraph-Packing, H-Induced-Packing, H-Scattered-Packing, and H-Odd-Minor-Packing problems: if H is bipartite, then the problem is para-NP-complete parameterized by bipartite treewidth while, if H is non-bipartite, then the problem is solvable in XP-time. Beyond bipartite treewidth, we define 1-ℋ-treewidth by replacing the bipartite graph class by any graph class ℋ. Most of the technology developed here also works for this more general parameter.

Cite as

Lars Jaffke, Laure Morelle, Ignasi Sau, and Dimitrios M. Thilikos. Dynamic Programming on Bipartite Tree Decompositions. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 26:1-26:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{jaffke_et_al:LIPIcs.IPEC.2023.26,
  author =	{Jaffke, Lars and Morelle, Laure and Sau, Ignasi and Thilikos, Dimitrios M.},
  title =	{{Dynamic Programming on Bipartite Tree Decompositions}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.26},
  URN =		{urn:nbn:de:0030-drops-194455},
  doi =		{10.4230/LIPIcs.IPEC.2023.26},
  annote =	{Keywords: tree decomposition, bipartite graphs, dynamic programming, odd-minors, packing, maximum cut, vertex cover, independent set, odd cycle transversal}
}
Document
PACE Solver Description
PACE Solver Description: Touiouidth

Authors: Gaétan Berthe, Yoann Coudert-Osmont, Alexander Dobler, Laure Morelle, Amadeus Reinald, and Mathis Rocton

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
We describe Touiouidth, a twin-width solver for the exact-track of the 2023 PACE Challenge: Twin Width. Our solver is based on a simple branch and bound algorithm with search space reductions and is implemented in C++.

Cite as

Gaétan Berthe, Yoann Coudert-Osmont, Alexander Dobler, Laure Morelle, Amadeus Reinald, and Mathis Rocton. PACE Solver Description: Touiouidth. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 38:1-38:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{berthe_et_al:LIPIcs.IPEC.2023.38,
  author =	{Berthe, Ga\'{e}tan and Coudert-Osmont, Yoann and Dobler, Alexander and Morelle, Laure and Reinald, Amadeus and Rocton, Mathis},
  title =	{{PACE Solver Description: Touiouidth}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{38:1--38:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.38},
  URN =		{urn:nbn:de:0030-drops-194576},
  doi =		{10.4230/LIPIcs.IPEC.2023.38},
  annote =	{Keywords: Twinwidth, Pace Challenge}
}
Document
Track A: Algorithms, Complexity and Games
Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

Authors: Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Let G be a minor-closed graph class and let G be an n-vertex graph. We say that G is a k-apex of G if G contains a set S of at most k vertices such that G⧵S belongs to G. Our first result is an algorithm that decides whether G is a k-apex of G in time 2^poly(k)⋅n². This algorithm improves the previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020, TALG 2022], whose running time was 2^poly(k)⋅n³. The elimination distance of G to G, denoted by ed_G(G), is the minimum number of rounds required to reduce each connected component of G to a graph in G by removing one vertex from each connected component in each round. Bulian and Dawar [Algorithmica 2017] proved the existence of an FPT-algorithm, with parameter k, to decide whether ed_G(G) ≤ k. This algorithm is based on the computability of the minor-obstructions and its dependence on k is not explicit. We extend the techniques used in the first algorithm to decide whether ed_G(G) ≤ k in time 2^{2^{2^poly(k)}}⋅n². This is the first algorithm for this problem with an explicit parametric dependence in k. In the special case where G excludes some apex-graph as a minor, we give two alternative algorithms, one running in time 2^{2^O(k²log k)}⋅n² and one running in time 2^{poly(k)}⋅n³. As a stepping stone for these algorithms, we provide an algorithm that decides whether ed_G(G) ≤ k in time 2^O(tw⋅ k + tw log tw)⋅n, where tw is the treewidth of G. This algorithm combines the dynamic programming framework of Reidl, Rossmanith, Villaamil, and Sikdar [ICALP 2014] for the particular case where G contains only the empty graph (i.e., for treedepth) with the representative-based techniques introduced by Baste, Sau, and Thilikos [SODA 2020]. In all the algorithmic complexities above, poly is a polynomial function whose degree depends on G, while the hidden constants also depend on G. Finally, we provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of graphs E_k(G) = {G ∣ ed_G(G) ≤ k}.

Cite as

Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 93:1-93:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{morelle_et_al:LIPIcs.ICALP.2023.93,
  author =	{Morelle, Laure and Sau, Ignasi and Stamoulis, Giannos and Thilikos, Dimitrios M.},
  title =	{{Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{93:1--93:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.93},
  URN =		{urn:nbn:de:0030-drops-181458},
  doi =		{10.4230/LIPIcs.ICALP.2023.93},
  annote =	{Keywords: Graph minors, Parameterized algorithms, Graph modification problems, Vertex deletion, Elimination distance, Irrelevant vertex technique, Flat Wall Theorem, Obstructions}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail